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ABSTRACT

A low energy effective action is derived for a single D-particle. We find that at
open string tree level, it behaves like a free particle with mass � 1

�
gc. A system

of many D-particles is described by a Yang-Mills action after dimensional reduction
to 0+1 dimensions. Physically, the degrees of freedom are the relative positions of the
particles, and a set of harmonic oscillators corresponding to strings that may stretch
between them. Upon compactification, the quantum mechanics of many D-particles
turns out to be equivalent to Yang-Mills theory on a single multiply wound D-string,
a fact that is known as T-duality.

Scattering of two D-particles is considered. It is found that supersymmetry is es-
sential, since purely bosonic D-particles are confined by a potential that grows lin-
early with the distance between them. In the supersymmetric theory, D-particle scat-
tering is found to contain broad resonances, which offers evidence for the existence of
bound states of N D-particles, as needed for the conjectured equivalence of M-theory
and D-particle quantum mechanics.

A short general introduction to string theory, and to the way D-branes appear in it,
is included.
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Piglet came a little closer to see what it was. Eeyore had three sticks on the ground, and was
looking at them. Two of the sticks were touching at one end, but not at the other, and the third
stick was laid accross them. Piglet thought that perhaps it was a Trap of some kind.
‘Oh, Eeyore,’ he began again, ‘I just —’
‘Is that little Piglet?’ said Eeyore, still looking hard at his sticks.
‘Yes, Eeyore, and I —’
‘Do you know what this is?’
‘No,’ said Piglet.
‘It’s an A.’
‘Oh,’ said Piglet.
‘Not O – A,’ said Eeyore severely. ‘Can’t you hear, or do you think you have more education

than Christopher Robin?’
‘Yes,’ said Piglet. ‘No,’ said Piglet very quickly. And he came closer still.
‘Do you know what A means, little Piglet?’
‘No, Eeyore, I don’t.’
‘It means Learning, it means Education, it means all the things that you and Pooh haven’t

got. That’s what A means.’
‘Oh,’ said Piglet again. ‘I mean, does it?’ he explained quickly. He stepped back nervously,

and looked round for help.
‘Here’s Rabbit,’ he said gladly. ‘Hallo, Rabbit.’
‘What’s this that I’m looking at?’ said Eeyore still looking at it.
‘Three sticks,’ said Rabbit promptly.
‘You see?’ said Eeyore to Piglet. He turned to Rabbit. ‘I will now tell you what Christopher

Robin does in the mornings. He learns. He becomes Educated. He instigorates – I think that is
the word he mentioned, but I may be referring to something else – he instigorates Knowledge.
In my small way I also, if I have the word right, am – am doing what he does. That, for instance,
is —’
‘An A,’ said Rabbit, ‘but not a very good one. Well I must get back and tell the others.’
Eeyore looked at his sticks and then he looked at Piglet.
‘What did Rabbit say it was?’ he asked.
‘An A,’ said Piglet.
‘Did you tell him?’
‘No, Eeyore, I didn’t. I expect he just knew.’
‘He knew? You mean this A thing is a thing Rabbit knew?’
‘Yes, Eeyore. He’s clever, Rabbit is.’
‘Clever!’ said Eeyore scornfully, putting a foot heavily on his three sticks. ‘Education!’ said

Eeyore bitterly, jumping on his six sticks. ‘What is Learning?’ asked Eeyore as he kicked his
twelve sticks into the air. ‘A thing Rabbit knows! Ha!’

— A. A. Milne, ‘The house at Pooh corner’ (slightly condensed)
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INTRODUCTION

HISTORICAL INTRODUCTION TO STRING THEORY AND

D-BRANES

People will one day look back
on our epoch as the period
when it all began.

— Edward Witten

String theory was first introduced as a model for understanding the abundance of resonances
found in strong interaction experiments. Resonances had already been found with spins ranging
upto 11�

2, and – quite apart from the aesthetic unpleasantness of a theory with a large number of
fundamental particles – no consistent theory was known for describing fundamental particles
with spin higher than one. In 1968 Veneziano found a model for two particle scattering that
produced amplitudes with contributions from the exchange of particles with any (integer) spin.
This model had two very important characteristics: first, it predicted very soft high energy
behaviour, whereas ordinary field theories containing high spin exchanges necessarily have
divergent amplitudes in the ultraviolet1) . Second, it has the amazing property of duality: the
expansion of the amplitude in terms of t-channel poles is exactly the same as the expansion in
s-channel poles.

t

t-channel scattering

s

s-channel scattering

The Veneziano model offered a description of mesons in terms of strings2) , with charges on
either end. These charges are equivalent to the flavour charges of the modern description of
mesons in QCD. By picking charges in the fundamental (3) and anti-fundamental (3̄) repres-
entations of SU � 3 � for the string endpoint charges, it modelled the then-known mesons (upto η
and φ; J

�
ψ had not yet been discovered): SU � 3 � is the (‘Eightfold Way’) symmetry group of u,

d and s quarks.

1)Two scalar particles exchanging a spin m particle give rise to an t-channel amplitude roughly of the form
A � sJ

t � M2 . The factor sJ can be understood from the fact that the vertex of two scalar particles φ and a spin J

particle χµ1µ2 � � � µJ must be proportional to φ ���∂ µ1 �	�
� �∂ µJ φχµ1µ2 � � � µJ . This gives 2J factors of momentum for the
t-channel diagram, or (very roughly) J factors of s.

2)Historically, the interpretation in terms of open strings was discovered only a some years later.

7



8 INTRODUCTION

The model’s high energy behaviour fitted experimental data quite well, but there were some
problems. Most importantly, the theory could not describe baryons, because it contained only
particles with integer spin. Then, in 1969, experiments at SLAC showed that the structure
functions of baryons agreed very well with the notion of point-like constituents, or partons1) .
The discovery of the J

�
ψ particle and its explanation in terms of a fourth quark ended the

debate in favour of the parton model of gluons and quarks, or quantum chromodynamics. The
Veneziano model disappeared from the particle physicists’ view of the world.

Theoretical physicists, however, did not lose interest completely, and investigated whether the
model could be used in another context where high spin had been causing major problems:
quantum gravity. The graviton of general relativity is a spin two particle, which in quantum
field theory has a badly diverging high energy scattering amplitude: A � s2 �

t. String theory
could solve this problem, because of the beautiful scaling behaviour of the Veneziano model.
However, such optimism was dealt a heavy blow when the theory was found to predict a ta-
chyon, a particle with negative mass squared, that really belongs to the realm of science-fiction.

Luckily, a way to get rid of the tachyon was developed during the ’70s: in 1971, Ramond
[2], and Neveu and Schwarz [3] had found methods for introducing fermions to string theory.
Their models contained a symmetry between bosonic and fermionic degrees of freedom, which
was to become known as supersymmetry. In 1974, Wess and Zumino extended these ideas to
supersymmetry in four dimensions [4]. In 1977 Gliozzi, Scherk and Olive showed [5] that it
was possible to truncate the spectrum of the Ramond-Neveu-Schwarz model in such a way that
it becomes supersymmetric in space-time. Their technique, which has become known as the
GSO projection, expunges the tachyon from the string spectrum, and states that the massless
graviton and its superpartners, the gravitinos, form the ground state multiplet of the string
spectrum. Finally, in 1981 Green and Schwarz found a different formulation for this theory, in
which space-time supersymmetry is evident right from the beginning.

By this time, theoretical interest had increased considerably: string theory consistently de-
scribed massless spin two particles, and related them to other massless particles by supersym-
metry. Thus, for the first time in the history of physics, this was a model that might just possibly
be found to describe all of the known particles and forces at the same time. In supersymmet-
ric string theory (or ‘superstring theory’), the particles occurring in the standard model are
represented by excitations of strings. This does not happen in a completely straight-forward
manner, though. Considerations of quantum mechanical consistency show that string theory
works best in ten space-time dimensions. In order to make contact with the four dimensions of
every day experience, it is suggested that six of these should be compactified, that is, replace

� 10 by
� 4 � C6 with C6 a compact manifold, eg T6, and take the radii of this manifold to

(near) zero. Since a reasonable energy scale for string theory turns out to be near the Planck
scale (1019 GeV), the particles in the standard model should come forth – through compactific-
ation and a Higgs-like mechanism of spontaneous symmetry breaking [6] – from the massless
modes of the string. This scheme is an extension of an old attempt to unify gravity and electro-
magnetism, namely Kaluza-Klein theory, in which a five-dimensional space-time is proposed,
with one compact direction. The graviton gMN on this space then splits into the graviton gµν of
four-dimensional space-time, the electromagnetic potential Aµ � gµ4 and a scalar, the dilaton

1)An historic account of these events may be found in [1], chapter 21.
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φ � g44
1).

Gradually, a picture emerged of five consistent superstring theories, which were called type I,
with open and closed strings; types IIA and IIB, with closed strings only2); and two ‘heterotic’
theories, which are a mixture of superstrings and bosonic strings3) . This was all very nice and
pretty, but, as many people noted, only one theory-of-everything is really needed: ‘As it was in
the ’eighties, there were five consistent string theories, leading to the mystery: if one of them
describes our world, who lives in the other four worlds?’ (Witten, in a 1997 interview).

This mystery has largely been solved, since over the last five or ten years, people have found
various connections between these theories, the so-called dualities, which relate different re-
gimes of different theories, for example equating the strong and weak coupling constant limits
of the heterotic string after compactification to four dimensions, and equating the IIB theory
compactified on a cylinder with radius R to the IIA theory compactified on a cylinder with
radius � 1

�
R. Whereas at first these connections seemed to be independent of one another,

in recent years strong evidence has appeared that in fact all of the five string theories4) are
connected [8], leading to the idea that there should be one underlying theory, which is usually
referred to as M-theory, although nobody really knows what the ‘M’ is supposed to stand for:
suggestions vary between ‘membrane’, ‘matrix’, or even ‘magic’, or ‘mystery’.

Overview

In this thesis we shall be concerned with particles in string theory, which are a consequence
of one of the dualities mentioned above: in a 1989 article [9] (see also [10]), Dai, Leigh and
Polchinski showed that a theory of open and closed strings in a space-time with some compact
directions is equivalent to a seemingly different theory in which the open strings must have
their endpoints fixed on a single hyperplane, which is called a D-brane5) � 6). As will be shown
in chapter two, it is possible to have D-branes of any dimension, running from the dimension
of space all the way down to zero.

At first D-branes were seen mostly as yet another interesting phenomenon in string theory,
that did not have too much importance. However, in 1995 Polchinski showed [11] that D-branes
carry a charge, which identified them as a particular kind of object that was required to exist
in type II theory because of a conjectured duality, but which no-one had found as yet. Since
then, D-branes have been the subject of many studies. In particular the zero dimensional ones,
the D-particles, have recently been the focus of much interest, since a proposal [12] has been

1)In the original formulation this extra particle was considered a nuisance, and people went into many twists
and turns to explain it away. In string theory, the coupling constant for string–string scattering is determined by the
vacuum expectation value of the dilaton, and so nobody would want to sweep under the theoretical rug.

2)The difference between IIA and IIB is that the IIA theory contains both left- and right-handed fermions, and
treats them symmetrically, while IIB theory contains fermions of one handedness only.

3)It is not easy to explain heterotic strings in a completely qualitative way, but after reading chapter 1 of this
thesis, the treatment presented in [7]

�
6.3 should be accessible.

4)and a sixth theory, supergravity in eleven dimensions.
5)‘D’ stands for Dirichlet: a string that has its endpoints fixed, satisfies Dirichlet boundary conditions, and ‘brane’

is a neologism meaning ‘an n-dimensional generalization of a membrane’.
6)Actually, strings with Dirichlet boundary conditions had been considered before (as early as the 1970s), but

Day, Leigh and Polchinksi were the first to realize that the Dirichlet hyperplane is a dynamical object.
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forwarded which suggests that they may play a much more fundamental role in string theory
than was understood when they were first discovered. In this proposal, D-particles are perceived
as fundamental building blocks in M-theory: the eleven dimensional theory that is conjectured
to be the underlying theory from which all string theories may be found in various limits.

D-particles will be the main subject of the present work: after two introductory chapters
on string theory and the way D-branes appear in it, we shall derive an effective action for D-
particles. This will be done in two steps: first (in chapter three) we shall compute an effective
action for a single D-particle, using techniques developed by Fradkin and Tseytlin in 1985
[13, 14, 15, 16] in the context of finding a low energy effective action for various fields coupling
to the string. In chapter four we shall generalize this action to a system of many D-particles,
and we shall see how the large N limit of N D-particles on a compact space is connected to
open string theory.

Finally, in chapter five we shall be concerned with some aspects of the spectrum of the
D-particle action, and we shall investigate a scattering experiment of two supersymmetric D-
particles. By means of a calculation that is quite interesting in its own right, because of its
relative simplicity and its hardly depending on specifically string theoretic techniques, we find
that in such scattering, resonances are found with a long lifetime. This is evidence in favour of
the existence of bound states of D-particles, a sine qua non for M-theory.
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CHAPTER 1

PARTICLES AND STRINGS

If a string has one end,
then it has another end.

— Unix fortune cookie

This chapter will introduce the basics of string theory as needed for the rest of this thesis. Since
most of the calculations to come will be done in the context of bosonic string theory, that will
be the main focus of this chapter. Even so, supersymmetry will play an important role in the
final chapter, and a short introduction to this important subject will be given at the end.

The structure of this chapter is as follows: We will first find an action for the string which
is an extension of the action for a relativistic particle. We will then proceed to find mode
expansions for the fields occurring in this action. These form the basis from which to quantize
the theory. We shall be extremely brief about quantization proper. After some discussion about
the possibility to add charges to the ends of an open string, as mentioned in the introduction,
the final section will present a minimal introduction to supersymmetry in string theory.

About all of these subjects, we shall necessarily be brief. A proper introduction to the major
concepts of string theory could easily fill a book. This book has in fact been written [7], and
anyone who intends to learn about string theory should read it.

1.1 Strings from particles

As promissed, we start by finding an action for the free relativistic string as an extension of
the point particle action. After reviewing the latter, we shall first consider a generalization to
objects of any dimension, before focussing on the string action itself.

1.1.1 The relativistic point particle

The action of a free particle in special or general relativity is proportional to the length of its
world-line in Minkowski space:

Sparticle
���
world � line

ds �
11



12 PARTICLES AND STRINGS

The form which correctly reduces to the non-relativistic case S � � dt 1
2 mv2 is

Sparticle ��� m �
world � line

dτ

�
� gµν

dxµ

dτ
dxν

dτ � � m �
world � line

dτ � � ẋ2 � (1.1)

where τ is any parametrization of the world-line, xµ � τ � are the coordinates of the particle and
gµν � x � is the metric of space-time. We will be using a Minkowski signature ��� 1 �	� 1 � � � � �	� 1 � .

While this form of the action shows its origin very clearly, it is not well suited for use in cal-
culations, since the square root makes for unpleasant equations of motion. A more manageable
form can be acquired by introducing an einbein e on the world-line, and writing

Sparticle � 1
2
�

world � line

dτ 
 e � 1ẋ2 � em2 � � (1.2)

This reduces to the previous form (1.1) upon solving the equation of motion for e:

� e � 2ẋ2 � m2 � 0 � e �� � ẋ2

m
�

The action (1.2) is much more useful in calculations, particularly since it is possible to get
rid of e by gauge fixing: the action is invariant under reparametrization τ � τ̃ � τ � for general
functions τ̃. This invariance can be exploited to set e to a convenient value, eg. e � m � 1. This
reduces the action to the simple form

Sparticle � m
2
�

world � line

dτ ẋ2 �

since the second term is a constant, which is (classically) unimportant. In this form the action
looks quite a lot like the classical form, but this is slightly deceptive: it contains a term ẋ2

0,
which is absent classically. The gauge choice e � m � 1 is incompatible with globally setting
x0 � τ, so ẋ2

0 is not just a constant.

1.1.2 Extension to n dimensions

Just like the path of a point particle – a zero dimensional object – is specified by writing down
a mapping from a one dimensional world-line into space-time, the path of an n-dimensional
object is specified by a mapping from a � n � 1 � -dimensional world-volume into space-time. We
could take the volume of this path as the action, generalizing (1.1), but it turns out that in fact
(1.2) is more easily generalized:

Sn ��� T � n �
2
�

world � volume

dn � 1σ  � hhαβ ∂αXµ � ∂βXµ � (1.3)

where: T � n � is a parameter of dimension � mass � n � 1, the ‘tension’ of the object,

σα parametrizes theworld-volume (α � 0 � � � n),

h � σ � is the determinant of the metric on the world-volume,
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hαβ � σ � is the inverse of this metric, and

Xµ � σ � are the space-time coordinates of the object.
Note that this action is again invariant under reparametrizations of the world-volume: as is
well known from general relativity, dn � 1σ  � h represents the invariant volume element, while
hαβ ∂αXµ∂βXµ is manifestly invariant since it contains no free world-sheet indices.

We can ask whether it is possible to gauge hαβ away in a similar manner as the einbein for a
particle. In general, this is not the case: whereas in the point particle case e contained exactly the
right number of degrees of freedom to be eliminated by the reparametrization invariance of the
world-line, its generalization hαβ contains many more degrees of freedom. In fact, hαβ, being
a symmetrical � n � 1 � � � n � 1 � -matrix, contains 1

2 � n � 1 � � n � 2 � gauge degrees of freedom,
while only � n � 1 � can be fixed using the invariance. This means that for higher dimensional
objects, some degrees of freedom are left in the metric.

For the very important special case n � 1 – in other words, for strings – there is however
a simple way out of this problem: in this case – and only in this case – the action is invariant
under Weyl scaling:

hαβ � σ � � Λ � σ � hαβ � σ � �
 � h scales like Λ � n � 1 � �

2 under this scaling when hαβ is an � n � 1 � � � n � 1 � -matrix, so  � hhαβ

is Weyl invariant for n � 1. Together, the reparametrization and Weyl invariances are exactly
enough to gauge fix the three degrees of freedom of hαβ in the string case.

1.1.3 Action for a free relativistic string

The rest of this chapter will deal only with strings. We will use the term world-sheet for the
two dimensional world-volume of a string, and we will parametrize it using � τ � σ � , τ being a
time-like coordinate and σ space-like. The tension T is then associated with a fundamental
length, which – in units � � c � 1 – is given by l � 1

�

 πT .
As noted above, the reparametrization invariance can be used to bring the metric to the form

hαβ � e � Φ � h0 � αβ, where h0 is some standard form. In two dimensions the action (1.3) is Weyl-
invariant and the conformal factor e � Φ scales out of the problem. Φ � Φ � τ � σ � may thus be used
to re-shape awkward diagrams to standard shape and to bring external particle lines down to
points on a sphere or n-torus, as depicted in figure 1.1.

� �

Figure 1.1: Scattering of three strings in mass eigenstates. Transformation of an awkward
shape to an easier one using Weyl scaling.
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We may thus make the gauge choice hαβ � ηαβ, which reduces the action to

Sstring � T
2
�

world � sheet

dτdσ
�
� ∂τX � 2 � � ∂σX � 2 � � (1.4)

1.2 Mode expansion

Mode expansion is the basis for quantization: it is possible to expand the fields X µ of (1.4) in
terms of creation and annihilation operators αµ

n and α†µ
n. These can be used to build an infinite

tower of states with increasing energy, or mass in space-time.
The action (1.4) can be used to describe two kinds of string: open strings (with two end-

points), or closed strings (without endpoints). Since closed strings have simpler boundary con-
ditions, we will consider them first.

1.2.1 Mode expansion for closed strings

For closed strings the boundary conditions are periodicity in the σ-direction. We will take
σ � σ � π. The most general solution to the equation of motion 
 ∂2

τ � ∂2
σ
� Xµ � 0 which also

satisfies the boundary condition X µ � σ � τ � � Xµ � σ � π � τ � can then be written as the sum of an
arbitrary function depending on σ � τ only, and one depending on σ � τ only:

Xµ � σ � τ � � Xµ
L � σ � τ � � Xµ

R � σ � τ � � (1.5)

Mode expansion for the right- and left-moving parts can be written as:

Xµ
R � σ � τ � � 1

2
xµ � 1

2
l2 pµ � τ � σ � � i

2
l ∑

n �� 0

1
n

αµ
ne � 2in � τ � σ � (1.6a)

and

Xµ
L � σ � τ � � 1

2
xµ � 1

2
l2 pµ � τ � σ � � i

2
l ∑

n �� 0

1
n

α̃µ
ne � 2in � τ � σ � � (1.6b)

Note that xµ and pµ are the centre of mass position and space-time momentum.
Reality of X µ implies that xµ and pµ are also real, while the oscillator coefficients obey

� αµ
n � † � αµ� n

� and � α̃µ
n � † � α̃µ� n �

The equations of motion for the metric, (∂αX � ∂βX � 1
2 ηαβ � ∂X � 2 in our gauge), can be shown

to be equivalent to two constraint equations:

Ẋ2
R � Ẋ2

L � 0 �
The mode expansions for these equations read

Lm �
1
2

∞

∑
n � � ∞

αm � n
� αn � 0 �

L̃m �
1
2

∞

∑
n � � ∞

α̃m � n
� α̃n � 0 �
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In these expressions we have introduced αµ
0 � α̃µ

0 � 1
2 l pµ. The mass of an object in space-time

is always given by M2 � � pµ pµ. Together with the L0 and L̃0 equations the mass of a closed
string in a given oscillation state is thus found to be given by

M2
clas � 4

l2

∞

∑
n � 1

� α � n
� αn
� α̃ � n

� α̃n � � (1.7)

where we have used that in the present – classical – context everything commutes, so in partic-
ular αnα � n � α � nαn. It is important to realize that this restricts the validity of (1.7) to classical
closed string theory. We shall come back to this in the next section.

1.2.2 Mode expansion for open strings

For open strings the boundary conditions are found by partially integrating the string action
with respect to τ and σ:

Sstring ��� T
2
�

world � sheet

dτdσ Xµ 
 ∂2
τ � ∂2

σ
� Xµ

� T
2

π�
0

dσ Xµ∂τX
µ ������

� ∞

τ � � ∞

� T
2

� ∞�
� ∞

dτ Xµ∂σXµ ������

π

σ � 0

�
We will ignore the boundary term at τ ��� ∞, but after imposing 
 ∂2

τ � ∂2
σ
� Xµ � 0 the boundary

terms at σ � 0 � π remain. The boundary equation of motion is found to be

∂σXµ � 0 for σ � 0 and σ � π �
Physically, this corresponds to the fact that no momentum can flow past the ends of the string.

The open string mode expansion then reads:

Xµ � σ � τ � � xµ � l2 pµτ � il ∑
n �� 0

1
n

αµ
ne � inτ cos nσ �

For future reference, it is useful to rewrite this expansion in terms of left and right movers:

Xµ
R � σ � τ � � 1

2
xµ � 1

2
l2 pµ � τ � σ � � i

2
l ∑

n �� 0

1
n

αµ
ne � in � τ � σ � �

Xµ
L � σ � τ � � 1

2
xµ � 1

2
l2 pµ � τ � σ � � i

2
l ∑

n �� 0

1
n

αµ
ne � in � τ � σ � �

(Note that the coefficients αn are now the same for left- and right movers.)
Introducing αµ

0 � l pµ, one can find constraint equations

Lm �
1
2

∞

∑
n � � ∞

αm � n
� αn � 0 �

The equation for L0 once again yields a mass formula:

M2
clas � 2

l2

∞

∑
n � 1

α � n
� αn �

Again, this formula is valid for classical strings only.
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1.3 Quantization

Although much of the work in this thesis is performed in a semi-classical context, a few words
on the very important subject of string quantization seem to be in order.

String quantization is non-trivial, since at present no method is known to quantize the string
while maintaining both manifest Lorentz invariance and unitarity: a Lorentz covariant scheme
of quantization introduces states of negative norm, which have to be cancelled by introducing
‘ghost coordinates’1) . Alternatively, it is possible to follow a quantization method which is
manifestly free of negative norm states, but only at the cost of giving up manifest Lorentz
invariance. If one chooses to do so, one must explicitly check Lorentz invariance afterwards.
This procedure is called light-cone quantization.

We shall not go into the details here, but simply state that the αµ
n’s become bosonic creation

and annihilation operators, that satisfy the following commutation relations:
�
xµ � pν � � iηµν ��

αµ� m
� αν

n � ��� mδm � nηµν ��
α̃µ� m

� α̃ν
n � ��� mδm � nηµν �

(all other commutators vanishing), which can be combined to build up an infinite tower of
massive states with various (integer) spins.

Upon quantization the constraint that Lm � 0 for m � 0 becomes the demand that the Lm’s
for m � 0 annihilite physical states. The equation L0 � 0 should be treated with more care: the
operators that occur in it do not commute, so there is an ordering ambiguity. This ambiguity is
resolved by defining

L0 �
1
2

α2
0
� ∑

n � 0

α � n
� αn �

With such a definition it would seem unreasonable to expect that L0 directly annihilates physical
states. However, since the commutators of the αn’s are c-numbers, we do know that there is
a constant a such that L0 � a annihilates all physical states. Consistency demands, such as
absence of negative-norm states (‘ghosts’) show that a � 1 when D � 26, which is the natural
number of space-time dimensions for bosonic string theory2) . With these modifications, the
mass formulas change into

M2 ��� 8l � 2 � 4l � 2
∞

∑
n � 1

� α � n
� αn
� α̃ � n

� α̃n � �
for closed strings and

M2 ��� 2l � 2 � 2l � 2
∞

∑
n � 1

α � n
� αn
�

for open strings.
There is a consistency condition which implies that the excitation level of the left- and the

right-moving sector must be equal. This means that the ground state for bosonic closed string

1)See eg. [7] chapter 3 for an explanation.
2)Not only is bosonic string theory inconsistent for D � 26, for D � 26 the theory is much less rich. The consid-

erations that lead to these conclusions may be found in [7], chapter 2.
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theory is a scalar tachyon (with mass squared M2 � � 8l � 2, while the first excited level consists
of massless fields: a traceless symmetric spin two field Gµν: the graviton, an anti-symmetric
spin two field Bµν and a scalar Φ, the dilaton. For the bosonic open string, the ground state
is again a tachyon (with M2 � � 2l � 2), while the first excited states form a massless vector
multiplet.

1.3.1 String field theory

Had this thesis dealt with particle theory, we would now have extended a first-quantized particle
action such as S � m

2

�
dτ ẋ2 to a second-quantized action such as S � � d4x � 1

2 � ∂φ � 2 � 1
2 m2φ2 � .

We would certainly like to do something similar in string theory, extending the world-sheet
action (1.4) to an action expressed as an integral over space-time. Although a lot of effort has
always been directed at this subject,1) , no serious candidates for a string field theory has been
found in this way. However, recent research aimed at a completely different branch of string
theory, has shown promise of shedding some light on string field theory from a different per-
spective altogether: work associated with the unravelling of the connection between D-particle
mechanics and M-theory may well turn out to have important bearing on a field theoretic for-
mulation of string theory.

1.3.2 Vertex factors

Computing the amplitudes of diagrams such as the one shown in figure 1.1 is done by replacing
external string lines by vertex operators that correspond to emission or absorption of a string
in a particular mass eigenstate. To get some indication of how this works out, consider the
following example. Suppose that all three external lines in figure 1.1 are massless gravitons,
with momenta kµ

i and polarizations ζµν
i (i � 1 � � � 3). The amplitude for this diagram is then

given by
A � 3 gravitons � � gc � ζ2;k2 � VG � ζ3;k3 � � ζ1;k1 � �

with gc a constant2); � ζ;k � the string state that describes the graviton, which is constructed from
the tachyon state � 0;k � by

� ζ;k � � ζµναµ� 1αν� 1 � 0;k � ;
and VG the graviton emission vertex operator, which is given by

VG � ζ � k � � ζµν
�

world � sheet

dτdσ ∂αXµ∂αXνeik � X �
Qualitatively the form of the latter can be understood as follows: first, a particle that carries
momentum k should certainly introduce a factor eik � X to the scattering amplitude, to ensure
conservation of momentum. Secondly, a graviton is a spin two particle, so we should expect
a factor build out of two of the X µ’s or their derivatives. (The fact that we have ∂X∂X and
not some other combination can be understood from the requirement of conformal invariance,
but we shall not go into it.) Finally, the integral over the world-sheet is the last remnant of

1)In [17] a basic introduction is presented.
2)gc is called the string coupling constant. It is not a coupling constant in the normal field theoretical sense, since

its value is given by the vacuum expectation value of a field: gc ��� eΦ 	 , with Φ the dilaton.
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the integration over all world-sheet shapes that are topologically equivalent to the ones shown
in figure 1.1: when considering tree level three particle scattering, one is not interested in the
actual shape of the blob in the centre, and so the shape dependence should be integrated away.
Most of the integrals involved are killed by the gauge fixing, but the integral over the relative
positions of the vertices remain. By stereographical projection of the sphere onto a plane, we
see that only the position of one particle has physical meaning: by rotating and scaling it is
possible to put the other two at positions (0,0) and (0,1).

Obviously, a lot more could be said about string quantization, but within the scope of this thesis,
there is no room for such an expansion.

1.4 Chan-Paton factors

Before moving on to superstring theory, let us introduce one more concept that will be needed
later on: Chan-Paton factors. Since open strings have two endpoints which are special points
from the world-sheet point of view, it would seem possible to insert extra symmetry charges at
those points. In fact this is possible, by augmenting string states �Λ � by group labels a and b̄ to
read ��

Λ;ab̄ � . Similarly, the vertex operators become matrices acting on the group indices. If a
transforms in a representation R of the gauge group G, b̄ must transform in the R̄ representa-
tion1). These charges are non-dynamical (their Hamiltonian vanishes), so the value of a and b̄
cannot change along the length of the world-sheet.

The conservation of Chan-Paton charges has

1

2

3

Figure 1.2: A disk-level open string dia-
gram. Where does the end of string 1 turn
into the end of string 2?

an important consequence for the amplitude of
scattering diagrams such as the one sketched in
figure 1.2: since there is no well defined point
where the right-hand side of string 1 turns into
the left-hand side of string 2, it must be the
case that a for string 1 and b̄ for string 2 are
equal. Supposing the three strings are in states

��
Λ � i � ;g � i � � � ∑a � b̄ ��

Λ � i � ;ab̄ � λ � i �
ab̄

, with i � 1 � � � 3,
the Chan-Paton degrees of freedom contribute
a factor Tr

�
λ � 1 � λ � 2 � λ � 3 � � to the scattering amp-

litude.
Quantum consistency considerations impose

severe restrictions on the choice of gauge group
and representations: an interacting theory with
massless vector bosons can only be consistent if
these transform in the adjoint of the gauge group. This gauge group must also obey certain
conditions (see [7], p. 293). In particular, this implies that R � R̄ must be the adjoint represent-
ation of G. This proves to be a strong restriction: it turns out that for oriented strings – with
distinguishable endpoints – the only possibilities are the U � n � groups, with an n charge2) on

1)If R is a real representation, R̄ and R are equal, of course.
2)ie a charge transforming in the fundamental representation.
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the one end and an n̄ charge on the other end of open strings, so string states transform in n � n̄,
which is the adjoint of U � n � . For unoriented strings there are two possibilities: SO � n � when
the amplitude is invariant under orientation reversal, and U Sp � n � when the amplitude changes
sign.
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The above is a very qualitative sketch. Hopefully it suffices as an introduction to the use of
Chan-Paton factors in the next chapter.

1.5 Superstring theory

The fact that the ground state is a tachyon – together with the absence of fermions – means that
bosonic string theory is not a serious candidate for a TOE. Luckily, it can be supersymmetrized,
yielding a theory with bosons and fermions, while at the same time removing the tachyon from
the spectrum. Supersymmetrizing the theory of bosonic closed strings yields type II superstring
theory, in which the lowest energy physical states are the massless bosons Gµν, Bµν and Φ, a set
of bosonic forms, and left- and right-moving gravitinos χµa. One can either choose the left- and
right-moving fermions to have different chirality, in which case the gravitinos have different
chirality as well and the forms will be F � 0 � , F � 2 � � dA � 1 � , F � 4 � � dA � 3 � , or one can choose the
fermions to have equal chirality. In that case the gravitinos will also have equal chirality and
the forms will be F � 1 � � dA � 0 � , F � 3 � � dA � 2 � , F � 5 � � dC � 4 � (with C � 4 � self-dual).

Supersymmetry is a subject that requires more introduction than can be given in these pages.
The reader is referred to [18] for a general introduction. The concepts of supersymmetry most
essential to string theory are also covered in [7]. Here we shall only present a supersymmetric
extension of the string action of � 1.1.3 and describe how the tachyon is dealt with.

1.5.1 World-sheet supersymmetry

We may augment the string action with a fermionic oscillator term:

S ��� � dτdσ
�

T
2

∂X � ∂X � iψ̄µρα∂αψµ � � (1.8)

with

ρ0 ��� 0 � i
i 0 � � ρ1 ��� 0 i

i 0 � �
two dimensional Dirac matrices satisfying � ρα � ρβ � � � 2ηαβ, and ψ a two-component Majo-
rana spinor1)

ψ � � ψ �
ψ � � �

while ψ̄ is defined by ψ̄ � ψT ρ0.
Adding a term to the action in this way may seem to be a rather ad hoc thing to do, but

(1.8) possesses a very special symmetry which makes it interesting: the action (1.8) is invariant
under

δXµ � ε̄ψµ

δψµ � � iραε∂αXµ � (1.9)

1)ie a spinor with real components
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when ε is a constant (in both τ and σ) anticommuting spinor. This is a global symmetry of a
very peculiar nature: it mixes bosons and fermions.

(1.8) is not invariant under local supersymmetry transformations, that is, transformations
like (1.9) with general ε � ε � τ � σ � . However, by adding some additional terms to the action, it is
possible to arrive at a locally supersymmetric form. It is then possible to make a gauge choose
which kills the additional terms, leaving (1.8) as the action to be considered for quantization.
We shall not go into the details, but merely remark that even in this version of string theory, the
ground state is a tachyon, with mass squared M2 ��� α � � 1.

1.5.2 Space-time supersymmetry

This embarressment can be alleviated in a most elegant way. By eliminating all states that are

annihilated by the GSO projection operator – which is roughly of the form P � 1 � � � 1 � F
2 , with F

the fermion excitation level – the tachyon is expunged from the spectrum, leaving the massless
states described above as the ground state. This projection has another virtue: the resulting
theory is supersymmetric in a space-time sense as well as on the world-sheet: the action can be
rewritten in terms of bosons X µ and fermions θi, with i � 1 � 21). Quantum consistency requires
that D � 10, in which case the fermions are (32-component) Majorana-Weyl spinors.

1)For each boson, there are two fermions: this is called N � 2 supersymmetry.



CHAPTER 2

T-DUALITY AND D-BRANES

Surprisingly, string theory also contains other
objects, which you might call membranes – or
flying carpets.

— Brian Greene

In the previous chapter we found actions for open and closed strings, and we found mode ex-
pansions for their space-time coordinates. We will now consider what happens to these mode
expansions when the space-time has compact directions. We shall find that in the closed string
sector new winding modes arise. These cause a duality between the theory compactified on
radius R, and the same theory compactified on radius R � � α

�

R
1). In the open string sector, this

duality has a striking consequence: in the dual theory, the open strings will no longer be com-
pletely free. Rather, their endpoints will be confined to lie on certain dynamical hyper-planes,
the so called D-branes.

Again, this chapter does not aim to be a comprehensive review of the subject. A thorough
discussion about D-branes and their properties may be found in [19]. Here, we shall merely
introduce the main ingredients and set the stage for the next chapters.

2.1 Closed strings on a space-time with compact directions

We shall begin by considering closed string theory. Examining the zero modes of the string
fields, we shall discover the duality mentioned above.

Consider a space-time with one compact direction: X 25 � X25 � 2πR. Upon quantization,
this implies that the space-time momentum in this direction, p25, no longer has a continuous
spectrum. Rather,

p25 � n
R
�

with n integer.
Additionally, X25 � σ � no longer needs to be strictly periodic: a string can be wound around

the compact direction, so we may have X 25 � σ � π � � X25 � σ � � 2πwR (with w integer). This

1)Two theories are said to be dual to one another when the physical contents of the two theories are the same.
The transformation that changes the one theory into the other is called a duality.

22
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possibility may be realized if the mode expansion for X 25 is augmented by a term linear in σ:
rewrite (1.6a) and (1.6b) as

Xµ
R � τ � σ � � 1

2
xµ �  2α � αµ

0 � τ � σ � � i

�
α �
2 ∑

n �� 0

1
n

αµ
ne � 2in � τ � σ �

Xµ
L � τ � σ � � 1

2
xµ �  2α � α̃µ

0 � τ � σ � � i

�
α �
2 ∑

n �� 0

1
n

α̃µ
ne � 2in � τ � σ � �

with
α̃µ

0
� αµ

0 �  2α � pµ �
For non-compact directions, single-valuedness of X µ implies α̃µ

0 � αµ
0, but for a compact direc-

tion the conditions are slightly more lenient: we may have

α̃25
0 � α25

0 �
�

2
α �

wR �
with w integer.

Thus we find

α25
0 �  2α �

�
n
R
� wR

α �
�

α̃25
0 �  2α �

�
n
R
� wR

α �
� � (2.1)

The structure of (2.1) suggests a symmetry between winding and momentum modes. Indeed, if
we rewrite the theory at radius R in terms of

X � � σ � τ � � XL � τ � σ � � XR � τ � σ � �
that is, change the sign of the right-moving modes, the (25-dimensional1) ) mass spectrum does
not change, nor does the energy-momentum tensor Tαβ � δS

δhαβ . Therefore the interactions do
not change. In fact, the only change is in the zero modes: changing the sign of α25

0 exchanges n
and w, while replacing R by R � � α

�

R .
Changing the sign of the right-moving modes in a given direction is called a T-duality trans-

formation. We have just shown that T-dualizing closed string theory at radius R yields the same
theory, but at radius R � : closed string theory is said to be self-dual under T-duality.

T-duality implies that at scales much smaller than  α � space-time looks the same to strings
as at scales much larger than  α � . This has a very important consequence for experiments that
attempt to probe space-time at short distances using strings: it simply will not work. If one tries
to probe space-time at length scale r �  α � , one will get answers pertaining to length scale
r � � α �

�
r.

1)Viewing the compact dimension as ‘internal’, we are describing a string in a 25 dimensional space-time, which
has some additional degrees of freedom that are associated with the compact direction. The mass is then computed
as M2 ��� ∑24

µ � 0 pµ pµ.
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2.2 T-duality and open strings

How does the above duality affect the open string sector? Since open strings do not have wind-
ing number, there does not seem to be any quantum number for momentum to mix with. We
should clearly look for more subtle effects.

Consider the mode expansion for open strings on a space-time with compact dimensions:

Xµ
R � σ � τ � � 1

2
xµ �  2α � αµ

0 � τ � σ � � i

�
α �
2 ∑

n �� 0

1
n

αµ
ne � in � τ � σ �

Xµ
L � σ � τ � � 1

2
xµ �  2α � α̃µ

0 � τ � σ � � i

�
α �
2 ∑

n �� 0

1
n

α̃µ
ne � in � τ � σ � �

Open string boundary conditions imply that

α̃µ
n � αµ

n � 0 � (2.2)

while by definition
α̃µ

0
� αµ

0 �  2α � pµ � (2.3)

with boundary conditions implying pµ � n
R as before.

If we change the sign of α25
0 , the boundary condition ∂σX25 �� σ

� 0 � π � 0 no longer holds.
Rather:

∂τX
25

�� σ
� 0 � π � 0 �

Neumann boundary conditions are replaced by Dirichlet boundary conditions! This means that
the endpoint of an open string cannot move in a T-dualized direction. More precisely, the equa-
tions (2.2) and (2.3) turn into

α̃µ
n
� αµ

n � 0

and

α̃µ
n � αµ

n �  2α �
n
R �

�
2
α �

wR �

respectively, where we have again introduced R � � α
�

R , and replaced n by w, to emphasize the
fact that the quantum number that counted momentum before T-duality, counts winding number
afterwards.

From the short calculation

� dσ ∂σX25 � � dσ
�
 2α � 
 α̃25

0 � α25
0
� � osc. �

� 2πwR � � 0 � (2.4)

we see that w indeed counts the number of times the string is wound around the compact
direction, and that the endpoints lie on the same hyperplane: X 25 � 2πwR � � X25. Dirichlet
conditions enable open strings to carry winding number which ordinary open strings do not,
thereby solving the mystery of what quantum number exchanges roles with momentum on T-
duality. (Note that an open string that has its endpoints fixed on a hyperplane can not have
momentum perpendicular to that plane.)
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In connection with the possibility of open string splitting and joining diagrams, (2.4) means
that all open strings have both endpoints on the same hyperplane1) , which we may as well take
to lie at X25 � 0. Such a hyperplane, which is characterized by the fact that open strings with
Dirichlet boundary conditions may end on it, is called a D-brane.

Although we only considered T-dualizing the 25th direction in the above, there is no reason not
to continue. We may T-dualize any number of directions, producing D-k-branes with dimension
k � 24 all the way down to zero: a D-particle. In fact, it is even possible to T-dualize the time
direction, thus producing a D- ��� 1 � -brane, or D-instanton.

2.2.1 D-brane dynamics

As presented above, the D-brane might seem to be perfectly rigid and constant. This however,
is not the case, nor would it seem possible to have such a static object in a theory containing
gravity. To see how the D-brane becomes a dynamical object, consider what happens to the
vertex factor associated with generic vectors coupling to the end of the string, VA � ζµ

�
X � � 2),

after T-duality.
Before T-duality, this vertex operator is given by

VA � ζµ
�
X � � ���

∂M

dτ ζµ � X � ∂tX
µ �

with the integral tracing the boundary of the world-sheet, and ∂t denoting the derivative tan-
gential to this boundary. After T-dualitizing the X 25 direction, this is changed into

VA � ζµ
�
X � � � 24

∑
µ � 0

�
∂M

dτ ζµ � X � ∂tX
µ � �

∂M

dτ ζ25 � X � ∂nX25 �

with ∂n denoting the derivative normal to the boundary. In this equation ζ25 is coupled to ∂nX25

at the boundary. Since the open string action can be partially integrated to yield a boundary
term S � ��� ∂M dτ X25∂nX25, it is clear that acting on a string boundary state with VA � ζ �

X � �
translates the boundary by an X � τ � -dependent amount.

One more point that is noteworthy, is the following: since X 25 is constant along the boundary,
the functional ζµ cannot depend on this coordinate. Straightforwardly extending this consider-
ation to the general D-k-brane case, we see that after some T-dualities the fields that live on the
boundary of the string – or, equivalently, on the D-brane – cannot depend on the transversal
coordinates. This will turn out to be very important in the next chapter.

1)Taking Γ to be a contour on such a diagram connecting any two endpoints, (2.4) generalizes to�
Γ

dσα ∂αX25 � 2πwR ���
for some w �
	 .

2)ie ζµ are a functionals of the limitation of X to the boundary of the world-sheet.
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2.2.2 The mass of strings with Dirichlet boundary conditions

As noted in chapter 1, the mass of an open string state is determined by the usual relation
M2 � � p2, and the constraint equation L0 � 0. After T-dualizing, these remain valid, but we
should be somewhat careful: after compactification, only the momentum in non-compact dir-
ections should be included in the calculation of M2. Returning to the case where only X 25 is
compact, this entails an increase of M2 by a term arising from � p25 � 2, which is now an internal
excitation. After T-duality, this momentum is replaced by winding number, and we find that L0

contains a term

1
2
� α̃25

0 � α25
0 � 2 � 1

2 � � 2
α �

wR ��� 2 �
which changes the mass formula into

M2 � 1
� 2πα � � 2 w2R � 2 � 1

α �

∞

∑
n � 1

α � n
� αn �

Note that in particular the ground state mass becomes

MGS � 1
2πα �

wR � � (2.5)

which is the string tension T � 1
2πα

� times the length of the wound string.

2.3 D-branes and Chan-Paton factors

Having found that T-dualizing a simple open string yields a string with its endpoints on a D-
brane, we may consider whether it is possible to have more than one D-brane. In this section we
shall find that T-dualizing an open string theory with U � n � Chan-Paton group yields a theory
of open strings with their endpoints lying on any of n D-branes. To show this, we shall first
examine the effect of a constant background gauge field on open strings, and then perform the
T-duality to carry the result over to the D-brane picture.

First of all, note that under a gauge transformation the string endpoint states transform as fields
in the fundamental (n) and anti-fundamental (n̄) representation respectively, that is, as

ψ � ψ � � Λψ �
and

ψ̄ � ψ̄ � � ψ̄ Λ � 1 �
On the other hand, the massless vector A transforms as

A � A � � ΛAΛ � 1 � iΛ∂Λ � 1 �
(For a recap of gauge theory see � 4.1, or one of the references therein.)
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2.3.1 Open strings with Neumann conditions

Consider a constant gauge background1) of the form:

A25 � X � � diag � θ1

2πR
� � � � � θn

2πR
� �

In this background consider a string state ��
Λ;ab̄ � that is a momentum eigenstate with

p25 � n
�
R. Such a state has a wave function that obeys Ψ � X 25 � a � � eina

�
RΨ � X25 � 2). At least

locally A25 is pure gauge, and it may be set to zero globally by performing a gauge transform-
ation with

Λ � diag � e � iθ1X25

2πR � � � � � e � iθnX25

2πR � �
However, this transformation does not leave the string endpoint states untouched:

ψ � � X25 � � diag � e � iθ1
X25
2πR � � � � � e � iθn

X25
2πR � ψ � X25 �

and

ψ̄ � � X25 � � ψ̄ � X25 � diag � e � iθ1
X25
2πR � � � � � e � iθn

X25

2πR
� �

This means that after the constant vector potential has been gauged away, the string state ��
Λ;ab̄ �

picks up an extra phase factor under translation:

Ψ � � X � a � � ei � θb � θa � a
2πR Ψ � X � a � � eina

�
R � i � θb � θa � a

2πR Ψ � � X �

This identifies the new state as a momentum eigenstate with

p � n � θb � θa
2π

R
�

The momentum thus effectively acquires a fractional part.

2.3.2 Open strings with Dirichlet conditions

Having considered the effect of Chan-Paton factors on ordinary open strings, we shall transfer
the results to the T-dual theory: after T-dualizing, momentum becomes winding number, and
we are left with open strings with fractional winding number. This means that the strings no
longer have their endpoints all on the same hyperplane. Rather, a string ��

Λ;ab̄ � has

X25 � σ � π � � X25 � σ � 0 � � � θb � θa � R � �
where R � � α �

�
R is the compactification radius of the dual theory, and integer winding terms

W � 2πnR � have been suppressed.

1)A background in string theory is the result of the presence of a particular set of excited strings that effectively
gives rise to a value for the space-time field. In the next chapter we shall present an effective description of the way
string dynamics yields an action principle for space-time fields.

2)A momentum eigenstate � p � quite generally has a configuration space wavefunction ψ � x � obeying ψ � x � a � �
eipaψ � x � , as can be seen from the Fourier transformation of the momentum space wavefunction ψ̃ � k � � δ � k � p � .
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Using the same argument as in � 2.2, we find that two different open strings – both having an
endpoint in state � a � – must have that endpoint lying on the same hyperplane. We may therefore
translate the X25 coordinate in such a way that a string ��

Λ;ab̄ � has

X25 � 0 � � θaR � and X25 � π � � θbR � �
Another way to express this constraint is to say that there are now n D-branes, at the positions
� X25 � θaR � : a � 1 � � � n � . In general such a configuration breaks the U � n � symmetry down to
� U � 1 � � n, (since a more general gauge transformation would move the branes about), but when
several D-branes coincide, the symmetry is partially restored1) .

The mass of strings stretching between D-branes

The formula (2.5) for the mass of an open string with winding number w implies that a string
stretching directly2) between two branes has ground state mass

MGS � ab � 1
2πα �

� θa � θb �R � � (2.6)

which is the string tension times the minimal length of a string stretching between the two
branes. The energy stored in the stretched string in this way, acts like an effective potential
pulling the branes together. We shall return to this subject in the last chapter.

As a final remark, note that the above discussion may be extended in an obvious way to D-k-
branes with lower values of k. The mass of stretched strings is then found to be proportional to
the shortest distance between the branes.

1)For each group of k coincident D-branes, k factors of U � 1 � are replaced by the larger group U � k � .
2)ie not wound around X25.



CHAPTER 3

D-PARTICLE EFFECTIVE ACTION

‘Shall we go out?’ asked Merlyn. ‘I think it is
about time we began lessons.’

— T. H. White, ‘The once and future king’

Armed with some basic knowledge of string theory, and having seen how D-branes occur in
it, we shall formulate an effective action to describes the dynamics of a single D-0-brane, or
D-particle. In the weak coupling limit, we shall find that a single D-particle behaves like a free
relativistic point particle with mass g � 1

c times the string mass scale.
In the first section of this chapter, we shall give a general introduction to the concept effective

action. Then we shall present a calculation made by Fradkin and Tseytlin [16] for the effective
action of open strings in an electromagnetic background. In the last section we shall see how
the D-particle action is derived as the T-dual of the same calculation.

All calculations in this chapter will be performed in the context of bosonic string theory.
However, the results can easily be transferred to superstring theory, as will be shown in an
appendix.

3.1 Effective actions

An effective action is an object from which amplitudes for one particle irreducible1) diagrams
can be found directly by functional differentiation, ie without performing a path integral. An
effective action generally looks more complicated than a ‘normal’ action, since it explicitly
contains all the information about possible internal lines, which is normally encoded in simple
propagators and vertices. All of this should be clear in a moment.

We will first consider effective actions in the context of quantum field theory before moving
on to the string context. The following material can be found in many textbooks on quantum
field theory, for instance [20].

We will use a vector-and-mapping notation for the fields and the sources: given two fields
φ � x � and χ � x � defined on a manifold M, (which may be four dimensional space-time or the

1)A diagram is called one particle irreducible (OPI), when there are no disconnected parts, and the diagram

cannot be split in two by cutting a single particle line, ie is OPI, while is not.

29
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world-sheet of a string), we define

φ � χ � �
M

dDx φ � x � χ � x � �
Furthermore we will be using operators A � x � y � on the space of fields, for which we define the
notation

A � φ : x �� �
M

dDy A � x � y � φ � y � �
Finally, we must differentiate between φn : x �� � φ � x � � n and φ

�
n which is defined by

φ
�

n : � x1
� � � � � xn ���� φ � x1 � � � � φ � xn � �

3.1.1 Effective actions in QFT

1. General definition in the context of QFT
Given a field theoretical action depending on several fields, S

�
φ � , we can make a generating

functional for scattering amplitudes by introducing

W
�
J � � � Dφ eiS � φ � � iJ � φ � (3.1)

From this functional we can derive the so-called disconnected Green functions by functional
differentiation:

G � n � � δnW
�
J �

δJ
�

n ���� J
� 0
� (3.2)

(Note that G � n � : � x1
� � � � � xn ���� G � n � � x1

� � � � � xn � .)
n-particle scattering amplitudes are related to these Green functions by

� φ � x1 � � � � φ � xn � � � 1
W

�
0 � G � n � � x1

� � � � � xn � �
G � n � are called disconnected, because they contain contributions from diagrams which are
composed from simple diagrams by simply plotting them side by side. For example in φ4-

theory, G � 4 � will not only contain terms such as and , but also terms like

and .

If we want to construct connected Green functions, we can define X
�
J � by

W
�
J �

� eiX � J � �
and write

G � n � � δnX
�
J �

δJ
�

n ���� J
� 0
� (3.3)

These Green functions contain only contributions from connected diagrams.
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At this point we may introduce the classical field ϕc by

ϕc �
δX

�
J �

δJ
�

and finally the effective action Γ
�
ϕc

� by

Γ
�
ϕc

�
� X

�
J � � J � ϕc �

(Note that Γ
�
ϕc

� is indeed independent of J, as the notation suggests, since the functional de-
rivatives with respect to J of the two terms cancel by the definition of ϕc.)

From the effective action, OPI amplitudes can be calculated directly, since it may be expan-
ded as

Γ
�
ϕ � � ∞

∑
n � 0

in

n!
� � n

∏
i � 1

d4xi � Γ � n � � x1
� � � � � xn � ϕ � x1 � � � � ϕ � xn � �

with Γ � n � the total amplitude for n particle scattering through OPI diagrams only.

2. Effective action of a free relativistic point particle
As an example, consider the following action for a scalar particle:

S
�
φ � ��� 1

2
φ � 
 � ∂2 � m2 � � φ �

(Again, integration over space-time is implied.)
Following the steps outlined above, we write

W
�
J � � � Dφ e � i

2 φ � � � ∂2 � m2 � � φ � iJ � φ � (3.4)

To evaluate the path integral we introduce G by 
 � ∂2 � m2 � G ��� . This is the normal Feyn-
man propagator, which may be written as

G � x � y � � � d4 p
� 2π � 4 eip � � x � y � 1

p2 � m2 �
We may now write 
 � ∂2 � m2 � � G � 1, to emphasize the relationship between 
 � ∂2 � m2 � and
G.

Following standard procedure we find

W
�
J � � � Dφ e � i

2 � φ � G � J � �G � 1 � φ � G � J ��� i
2 J �G � J

���� � D φ̃ e � i
2 φ̃ �G � 1 � φ̃ �� e

i
2 J �G � J

� e
i
2 J �G � J � (3.5)
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In the last step we have chosen a normalization for the path integral such that W
�
0 � � 1. More

properly, we should compute
�

Dφ e � i
2 φ �G � 1 � φ by going to Euclidean time t̄ � it in which we

find � Dφ e � 1
2 φ �G � 1

E � φ � N�
detG � 1

E

�
where N is a normalization constant.

Continuing the procedure of � 1.we compute X
�
J � , finding

X
�
J � � 1

2
J � G � J � (3.6)

Next we compute ϕc � δX � J �
δJ . From (3.4) we find that

ϕc � δX
�
J �

δJ
� 1

i
1

W
�
J � δW

�
J �

δJ
� 1

i
1

� 1 � i � φ � � �
φ �
� 1 �
�

where � � � � � denotes the vacuum to vacuum transition amplitude. The fact that ϕc is equal to the
expectation value of φ, justifies the term classical field.

On the other hand, (3.6) implies ϕc � G � J, from which we find J � G � 1ϕc. The effective
action is thus given by

Γ
�
ϕc

� � 1
2

J � G � J � J � ϕc � 1
2
� G � 1 � ϕc � � ϕc � � G � 1 � ϕc � � ϕc ��� 1

2
ϕc 
 � ∂2 � m2 � ϕc

�
which is of exactly the same form as the action we started with. This is as expected, since for a

free particle, the only OPI diagram is � , since there are no vertices.

3. Effective action for interacting field theory
If the action for a free particle is augmented with interaction terms, for example Sint � λ

4! φ4, it
will no longer be possible to find an exact expression for ϕc and the effective action. In such
cases we will have to content ourselves by defining the effective action as a series expansion in
terms of OPI Green functions, Γ

�
ϕ � � ∑n

in
n! Γ � n � � ϕ � n, as explained above.

We will not pursue this any further, in order to avoid drifting too far from the main purpose
of this chapter.

3.1.2 Effective action for strings

There is a very important distinction between the effective actions we considered in the previ-
ous section and the ones we will consider here: our starting point will now be a string world-
sheet action: a first quantized action. This means that the path integral over the exponentiated
action does not contain any disconnected diagrams from the space-time point of view. There-
fore, it may be possible to define effective actions direct from this path integral, without taking
the logarithm first. This programme was proposed by Fradkin and Tseytlin in [13], and elabor-
ated upon in [14] and [15]. They wrote down an effective action expressed in sources1) for the

1)The terms field and source have slightly subtle meanings in string theory: sources in world-sheet language,
behave like fields in the space-time sense, while fields on the world-sheet encode the coordinates of space-time.
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closed string excitations:

Γ
�
Φ � C � Gµν � Bµν � � � � � � ∑

χ � 2 � 0 � � 2 � � � �

g � χ
c
� Dhαβ DXµ e � S1 � X � � (3.7)

where S1
�
X � is defined by

S1
�
X � � �

Mχ

d2σ  hΦ � X � � 1
4πα �

�
Mχ

d2σ  hhαβ ∂αXµ∂βXν Gµν � X �

� 1
4π
�
Mχ

d2σ  hR � 2 � C � X � � i �
Mχ

d2σ εαβ ∂αXµ∂βXν Bµν � X �

� � � � (3.8)

In these formulas gc is the closed string coupling constant and χ is the Euler characteristic of
the world-sheet. χ counts the number of handles k: χ � 2 � 2k. In particular, for sphere diagrams
(the tree level of closed string theory) χ � 2. The fields occurring in the action are: R � 2 � : the
curvature of the world-sheet, and Φ, C, Gµν and Bµν: the sources for the string excitations: Φ is
the scalar tachyon, Gµν is the graviton, Bµν is the antisymmetric tensor and C is the dilaton.

Functional differentiation with respect to these sources (and multiplying by gc) can be used
to find scattering amplitudes. As an example (still in closed string theory), consider how dif-
ferentiating with respect to Gµν brings down the vertex factor for graviton emission: expanding

Gµν � X � in Fourier modes: Gµν � X � � � dD p� 2π � D eipX Gµν � p � , we have

ζµν
δΓ

δGµν � p � � ∑
χ � 2 � 0 � � 2 � � � �

g � χ
c
� Dhαβ DXµ e � S1 �X � ζµν

� d2σ eipX ∂αXµ∂αXν �
The integrand ζµνeipX ∂αXµ∂αXν is recognized as the vertex factor VG � pµ

� ζµν � for emission of
a graviton with momentum pµ and polarization ζµν.

1. Adding open string fields
The effective action may be augmented with open string contributions, by replacing (3.7) with

Γ
�
Φ � C � Gµν

� Bµν
� � � � ; φ � Aµ

� � � � � � ∑
χ

g � χ
c
� Dhαβ DXµ e � S1 � X � � S2 �X � � (3.9)

where χ can also take odd values, since a more general Riemann surface with n holes as well as
k handles has χ � 2 � 2k � n. Tree level in open string theory corresponds to a world-sheet with
the topology of a disk, so the highest allowable value for χ is χ � 1. In addition to the closed
string action, the string endpoints may also interact with the background. This fact is expressed
by including

S2
�
X � � �

∂Mχ

dt eφ � X � � i �
∂Mχ

dt ẊµAµ � X � � � � �

in the exponent. Here, φ is the open-string tachyon and Aµ the massless vector field. Note that
e is the einbein along the boundary: e � � hαβσ̇α � t � σ̇β � t � .
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2. Interpretation
Having written down these formulas, we take one step back and consider what they actually
mean. The actions S1 and S2 can be viewed as a description of the dynamics of a string that
interacts with background fields (or ‘sources’) living on space-time. This point of view isn’t
fully satisfactory though: the sources do not exist independently of the string, rather they are
carried by the string. The picture is improved slightly, if we view S1 and S2 as actions for a
string moving in a background set up by an ensemble of other strings. Better still, these actions
describe the interaction between fields living on the string world-sheet (X µ and hαβ) and fields
living in space-time (Φ, Gµν, Aµ, etc). Exponentiating and integrating the string fields away
leaves us with an effective description for the dynamics of the metric of space-time and a set
of fields living in that space-time, which is a direct result of the way these fields couple to the
various excitation modes of the string.

This then is our interpretation of (3.9): Γ describes the (low-energy)1) behaviour of a set of
interacting particles. This set includes the graviton, so space-time actively participates in the
dynamics, rather then being a static background. The properties of the particles are completely
determined by their previous interpretation as sources for excitations on the string world-sheet.

3. Low energy effective string field theory
As stated above, the effective action (3.9) contains only contributions from connected diagrams.
It is in fact possible to obtain all diagrams from this action by exponentiation. We could write

Z � � DΦDGµν
� � � eiΓ �Φ � Gµν � � � � � �

and couple sources to the objects which have now become fields in the space-time sense, Φ,
G, etc, to obtain a generating functional for all possible amplitudes. This scheme, which could
in principle be regarded as a sort of string field theory, is not useful in practice, since there are
an infinite number of (massive) fields to integrate over, which is not a very pretty feature for a
Theory Of Everything.

We will therefore limit our attention in this chapter to the massless sector, and consider only
special cases in detail.

3.2 Open strings and the electromagnetic vector field

In this section we shall apply the procedures introduced above to calculate an effective action
for the electromagnetic vector field Aµ in open string theory. We shall find that in the weak
coupling limit, that is ignoring loop corrections and higher derivatives of Aµ, this action equals
the Born-Infeld action S � � dDx � det

�
ηµν
� 2πα � Fµν

� [21]. This result was first described by
Fradkin and Tseytlin in [16]. The reason why we repeat their calculation in detail, is that we
wish to transfer the results to the T-dual theory: open strings coupling to a D-particle. Before
attempting this new subject, we wish to test our techniques on solid ground.

1)Ignoring fields that couple to higher string excitations limits the energy range for which the description is valid:
increasing the energy scale, the interaction with the more massive fields becomes a more and more important factor
in the dynamics of the low-mass fields.
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We shall work with Euclidean metric on the world-sheet (hαβ � diag � � 1 �	� 1 � ), and in space-
time (ηµν � diag � � 1 �	� 1 � � � � �	� 1 � ), which makes some properties of integrals and the field
strength more transparent.

3.2.1 The setting

Consider the following expression for the electromagnetic field coupling to the ends of an open
string:

Γ
�
Aµ

� � ∑
χ � 1 � 0 � � 1 � � � �

g � χ � Dhαβ DXµ e � S � X � � (3.10)

where S
�
X � is defined by:

S
�
X � � 1

4πα �
�
Mχ

d2σ  hhαβ ∂αXµ∂βXµ � i �
∂Mχ

dt ẊµAµ � X � � (3.11)

and we have Wick rotated to Euclidean time in order to facilitate the calculations.
In writing the expressions in this simple form, we have implicitly set the sources for closed

string excitations to trivial values (Φ � 0, Gµν � ηµν, Bµν � 0, � � � . The sources for the open
string scalar tachyon and for higher spin excitations have also been set to zero. Furthermore,
we will limit ourselves to U � 1 � as the choice for the gauge group for A, ie we shall not consider
Chan-Paton charges.

We write
Γ

�
Aµ

�
� ∑

χ � 1 � 0 � � 1 � � � �

g � χ � Dhαβ Z
�
Aµ

� � (3.12)

and postpone the integration and summation over the metric. At this point we split X µ � σ � τ �
into a term ξµ � σ � τ � which is non-constant1) , and a constant term xµ encoding the centre of mass
coordinate: X µ � σ � τ � � xµ � σ � τ � � ξµ. This gives us:

Z
�
Aµ

� � � dDx

� 2πα � � D
�
2
� Dξµ e � 1

4πα
�

�
d2σ � hhαβ ∂αξµ∂βξµ � i � dt ξ̇µAµ � x � ξ � � (3.13)

The x-integral will be postponed and suppressed in the following. Furthermore, we will par-
tially integrate the first term, yielding

1
2πα �

�
M

d2σ  hhαβ∂αξµ ∂βξµ � � 1
2πα �

�
M

d2σ ξµ∂α

�
 hhαβ ∂βξµ � � ξµ � A � ξµ �

where we used the fact that ξ obeys Neumann boundary conditions, and we extended the
notation defined in � 3.1 to integration over world-sheets.

We introduce the notation2)

φ � χ � �
∂M

dt φ � t � χ � t � �
1)A function without a zeroth Fourier component is called non-constant: eg f : ���	� is called non-constant if


dx f � x � � 0.
2)Parametrizing the boundary ∂M by t �� γµ � t � , we write φ � t �� φ � γ � t � � and similarly for operators A � t � t � � .
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and
A � φ : x �� �

∂M

dt A � x � t � φ � t � � or A � φ : t � �� �
∂M

dt A � t � � t � φ � t � �
depending on context. With the centre of mass-integral suppressed as promised, we may then
write (3.13) as:

Z
�
Aµ � � � Dξµ e � 1

2 ξµ �A � ξµ � iξ̇µ � Aµ � x � ξ � � (3.14)

3.2.2 The calculation

Integrals such as (3.14) are usually performed by completing squares. In the present case, a
boundary current coupled to ξ, it is appropriate to try to start by integrating out the parts of
ξ pertaining to the interior. In order to do so, we introduce a new field ηµ � t � defined on the
boundary1) , and insert a factor

1 � � Dηµ δ � ξ � η � (3.15)

into (3.14)2) . We may now use the presence of the δ-functional to replace Aµ � x � ξ � in (3.14)
by Aµ � x � η � , removing the ξ-dependence of the current. The ξ-integrals can now be performed
if we write

δ � ξ � η � � � Dνµ eiνµ
� � ξµ � ηµ � �

extending the Fourier transform of the ordinary δ-function (and absorbing the factors 2π in the
measure)3). With the results (3.34) and (3.35) from appendix 3.A, the square in (3.14) may be
completed:

Z
�
Aµ

� � �
M

Dξµ �
∂M

Dηµ �
∂M

Dνµ e � 1
2 ξµ � A � ξµ � iξµ � νµ � iηµ � νµ � iξ̇µ � Aµ � x � η � (3.16)

� �
M

Dξµ �
∂M

Dηµ �
∂M

Dνµ e � 1
2 ξ̃µ � A � ξ̃µ � 1

2 νµ � G � νµ � νµ � Ġ � Aµ � 1
2 Aµ � G̈ � Aµ � iηµ � νµ �

where ξ̃ � ξ � iG � ν � iĠ � A. For the purpose of the ξ-integrals, the difference between
ξ and ξ̃ is just a constant, which doesn’t change the result of the integration. Defining

1)More properly, if the boundary consists of a number of parts, ∂M � �
iCi, introduce fields ηµ

i � t � on each of
these parts.

2)This equation effectively defines the δ-functional: it can be made exact by timeslicing: split the length T of the
boundary into N pieces, and define ti � i

N T . Eq. (3.15) then becomes

1 � lim
N � ∞

��� N

∏
i � 1

dDη � ti �
� 2πα � � D � 2 � N

∏
i � 1

� 2πα � � D � 2δ � D � � ξ � ti � � η � ti � �
	
3)That is:

N

∏
i � 1

� 2πα � � D � 2δ � D � � ξ � ti � � η � ti � � �
��� N

∏
i � 1 � α �

2π � D � 2
dDν � ti � � ei∑N

i  1 νµ � ti ��� ξµ � ti � � ηµ � ti ��� 	
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Z0 � � M Dξµ e � 1
2 ξµ � A � ξµ � � detA � � D

�
2, we may next focus on the ν-integrals:

�
∂M

Dνµ e � 1
2 νµ � G � νµ � νµ � � Ġ � Aµ � iηµ �

� �
∂M

Dνµ e � 1
2 ν̃µ � G � ν̃µ � 1

2 ηµ � G � 1ηµ � iη̇µ � Aµ � 1
2 Aµ � G̈ � Aµ �

where ν̃ � ν � G � 1 � 
 iη � Ġ � A � , and G � 1 is defined by G � G � 1 � � ∂M , in other words, G � 1

is A limited to the boundary.
The ν-integrals can now be performed and the A � G̈ � A-terms cancel, so that we are left

with1):
Z

�
Aµ

� � Z0N D �
∂M

Dηµ e � 1
2 ηµ � G � 1 � ηµ � iη̇µ � Aµ � x � η � � (3.17)

with
N � �

∂M

Dν e � 1
2 ν � G � ν � � detG � � 1

�
2 �

We cannot hope to evaluate the η-integral exactly. Therefore, we will expand Aµ in powers of
ηµ:

Aµ � x � η � � Aµ � x � � ην∂νAµ � x � � 1
2

ηνηλ∂ν∂λAµ � x � � � � � �
Properly anti-symmetrizing and noting that � dt η̇µ � 0, yields:

η̇µ � Aµ � y � η � � 1
2

Fµν � dt η̇νηµ � 1
3

∂λFµν � dt η̇νηµηλ � � � � �
Following in the footsteps of Fradkin and Tseytlin, we consider only constant fields Fµν

2). In
this sector (3.17) may be computed exactly.

At this point Fµν is just a constant anti-symmetric matrix. As such, it is possible to find an
element U � SO � D � 3) for which UT FµνU � F̄ has a standard form:

F̄ �
�������

0 f1� f1 0
/0

. . .

/0 0 fD
�
2� fD

�
2 0

�������� �
In the sector where Fµν is constant, we may thus write (3.17) as

Z
�
Fµν

� � Z0N D �
∂M

� D
�
2

∏
i � 1

Dηi � e � 1
2 ηµ � G � 1 � ηµ � i

2 ∑D � 2
j � 1 f j

�
η̇2 j � 1

� η2 j � η2 j � 1
� η̇2 j � �

1)This result could have been found far more easily by replacing ξ̇ by η̇ in the final term of (3.16), but the method
employed here can be generalized more easily, as will be apparent in the next section.

2)In fact, taking Fµν to be constant is equivalent to assuming that Fµν is slowly changing on the string scale.
3)Recall that we are working in Euclidean space-time.
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Integrating the very last term by parts yields a form without derivatives of any of the η2 j .
Therefore, the functional integral over half of the η’s may be performed, yielding

Z
�
Fµν

� � Z0N D
�
2 �

∂M
� D

�
2

∏
i � 1

Dη2i � 1 � e � 1
2 ∑ j η2 j � 1 � G � 1 � η2 j � 1 � 1

2 ∑ j f j η̇2 j � 1 � G � η̇2 j � 1 �
since �

∂M

Dη e � 1
2 η � G � 1 � η � 1

 detG � 1
� N � 1

In the functional integrals the η’s are dummies, so, there being no cross-terms left, we may
separate the integrals to find:

Z
�
Fµν

� � Z0N D
�
2

D
�
2

∏
i � 1

�
∂M

Dη e � 1
2 η � G � 1η � 1

2 f 2
i η̇ � G � η̇ �

Taking out another D
�
2 factors of N � 1 this may be written as:

Z
�
Fµν

� � Z0

D
�
2

∏
i � 1

�
∂M

Dη e � 1
2 η � ∆i

� η � Z0
� dDx

� 2πα � � D
�
2

D
�
2

∏
i � 1

1

 det∆i

� (3.18)

where ∆i � � � f 2
i G̈ � G, and we have re-instated the integral over the centre of mass position.

(We have partially integrated the η̇ � G � η̇ term twice to yield η � G̈ � η.)
This is the final expression to be inserted into (3.12).

3.2.3 Tree level approximation

At loop level, the integration over the metric is quite complicated, but at tree level it can be
done easily: by conformal invariance we can gauge fix hαβ to any convenient value. We will
set hαβ � ηαβ, and take M to be the unit disk. Re-instating the integral over space-time, the tree
level term (χ � 1) in (3.12) reads:

Γtree
�
Fµν

� � 1
gc

Z
�
Fµν

� � (3.19)

Introducing z � x � iy � reiφ, the basic form of the propagator is � � 1
0 � z � z � � � 1

2π ln � z � z � � , since
� � 4∂∂̄1). (Acting with � on � � 1

0 yields 1
π ∂̄ 1

z � z
� . This is zero everywhere except where z � z � .

Noting that
�

M d2z ∂̄ f � � � ∂M dz f 2), and using the fact that � C dz zn � 1 � 2πiδn when C circles
the point z � 0 exactly once in the positive direction, we see that ��� � 1

0 � z � z � � � δ � 2 � � z � z � � as
claimed.)

As presented, � � 1
0 does not obey Neumann boundary conditions, but this can easily be men-

ded by adding a mirror charge:

� � 1 � z � z � � � 1
2π

ln � z � z � � � z � � z̄� � � 1 �
1)Note that ∂ � 1

2 � ∂x � i∂y � and ∂̄ � 1
2 � ∂x � i∂y � .

2)In our conventions, d2z � dzdz̄ � � 2idxdy.
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is the same as the basic form inside the unit disk, but does obey Neumann boundary conditions
on the boundary1) .

To continue our calculation, we need to limit the propagator to the boundary. Parametrizing
the boundary by z � t � � eit , we find

G � t � t � � ��� 2πα � � � 1 ��� α � ln 
 2 � 2cos � t � t � � � � 2α �
∞

∑
n � 1

1
n

cosn � t � t � � �
(The equality used in the last step can be obtained from any sufficiently large table of mathem-
atical facts.)

This can easily by differentiated to yield

G̈ � t � t � � � ∂t∂t
� G � t � t � � � 2α � ∑

n
ncosn � t � t � � �

This gives us

G̈ � G : � t � t � ����
2π�

0

dt � � 
 2α � � 2 ∑
n � m � 0

n
m

cosn � t � t � � � cosm � t � � � t � �

� 
 2πα � � 2 ∑
n � 0

1
π

cosn � t � t � � �
which differs from the δ-function by a constant term only:

δ � t � � 1
2π
� ∑

n � 0

1
π

cos nt �
For non-constant functions such as η, for which � dt η � t � � 0, this first term is unimportant, so
we have

� G̈ � G � � η � 
 2πα � � 2 � � η � 
 2πα � � 2 η �
In order to compute the determinant of ∆i, we must expand η on a basis for non-constant
functions

�
0 � 2π � � �

. The normalization is immaterial, since the measure of the path integral
hides an arbitrary constant. Taking η � ∑n �� 0 αnan, with

an � t � � 1

 π
cos � nt � � n � 0 � �

an � t � � 1

 π
sin ��� nt � � n � 0 � �

and � αn
� a set of constant coefficients, we find

� det∆i � � 1
2 � � Dη e � 1

2 η � ∆i
� η

� � ∏
n �� 0

dαn e � 1
2 ∑n � m

�� 0 αnαm an
� ��� � � 2πα

�

fi � 2G̈ � G � � am

1)Replacing z by reiφ, it is quite trivial to show that ∂r
� � 1 � 0 when r � 1.
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� � ∏
n �� 0

dαn e � 1
2 ∑n � m

�� 0 � 1 � � 2πα
�

fi � 2 � αnαm an
� am

� � ∏
n �� 0

dαn e � 1
2 ∑n

�� 0 � 1 � � 2πα
�

fi � 2 � α2
n

� ∏
n �� 0

�
1 � 
 2πα � fi

� 2 � � 1
2 �

Inserting this into (3.18) yields

Z
�
Fµν

� � D
�
2

∏
i � 1

∏
n � 0

1

1 � � 2πα � fi � 2 � (3.20)

Using Riemann ζ-functions1) , it is possible to find a prescription for such infinite products. In
this way (3.20) may be taken to mean

Z
�
Fµν

� � D
�
2

∏
i � 1

�
1 � � 2πα � fi � 2 �

To obtain a nice expression in terms of Fµν again, note that

D
�
2

∏
i � 1

�
1 � 
 2πα � fi

� 2 � � D
�
2

∏
i � 1

det � 1 2πα � fi� 2πα � fi 1 �
� det

�������
1 2πα � f1� 2πα � f1 1

/0

. . .

/0 1 2πα � fD
�
2� 2πα � fD

�
2 1

��������
� det 
 δµν � 2πα � Fµν

� � (3.21)

The final result is obtained by inserting this into (3.19):

Γtree
�
Fµν

� � Z0g � 1
c
� dDx

� 2πα � � D
�
2

�
det � δµν � 2πα � Fµν � � (3.22)

Rotating back to ordinary Minkowski metric simply means that all terms in the expansion of
(3.22) should be written in a Lorentz covariant way, eg the term

�
FµνFµν should be replaced by�

FµνFµν.

We have thus shown that the effective action for a vector potential coupling to the end of
an open string is in fact equal to the Born-Infeld action for non-linear electrodynamics. This
surprising result is exact in powers of Fµν, but it is only the first order approximation to the
full derivative expansion (terms containing ∂F , ∂∂F , � � � ), although it has been shown [24], that
for the supersymmetric equivalent to this calculation (which we present in appendix 3.B) the
Fn∂F∂F-terms vanish, and the first corrections to (3.22) are FF ∂∂F ∂∂F-terms.

1)In particular, ζ � 0 � � ∑n � 0 1 � � 1
2 , so ∏n � 0 A � e∑ logA � A∑ 1 � A � 1

2 . See [22] for further details, and [23]
for a justification of the use of this prescription in the present context.
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3.3 D-particles

In the previous section we considered open strings with Neumann boundary conditions. Now
we will take Dirichlet boundary conditions for all spatial coordinates. Following basically the
same procedure as before, this will enable us to derive an effective action for a single D-particle
in bosonic open string theory.

We start of from (3.12) again, but this time we take1):

S
�
X � � 1

4πα �
�
Mχ

d2σ  hhαβ∂αXµ∂βXµ � 1
2πα �

�
∂Mχ

dt X � mYm � X � � (3.23)

m runs over the coordinates transversal to the particle, ie the spatial coordinates: m � 1 � � � � � D �
1. We have not included a term

�
dt Ẋ0A0 � X � , since a (0+1)-dimensional gauge field does not

carry any physical degrees of freedom. In a more general setting, with Neumann boundary
conditions for some of the coordinates and Dirichlet for others, we would have to include both
Ẋ iAi � X � and X � mYm � X � terms. Also note that we again use Euclidean metric on the world-sheet
and in space-time.

As above we set all excitations to zero, except for the massless vector, and split X µ � xµ � ξµ,
with ξµ non-constant on the boundary of the world-sheet and xµ constant. We thus have

Γ
�
Y m �

� ∑
χ � 1 � 0 � � 1 � � � �

g � χ � Dhαβ Z
�
Y m � � (3.24)

with

Z
�
Y m � � � dDx

� 2πα � � D
�
2
� Dξµ e � 1

4πα
�

�
d2σ � hhαβ ∂αξµ∂βξµ � 1

2πα
� � dt ξ

� mYm � x � ξ � � (3.25)

Again we postpone the x-integration and suppress it.
Analogously to the first steps in � 3.2, we want to change (3.25) into a Gaussian integral. In

order to do so, the first term must be partially integrated. Note that the boundary term ξ � � ξ
vanishes: ξ � 0 is zero because of the Neumann condition on the time-direction, and the ξm’s are
zero, because the Xm’s are constant on the boundary due to the Dirichlet condition. ξm, being
the non-constant part of X m, therefore vanishes. Thus we find:

Z
�
Y m � � � Dξµ e � 1

2 ξµ � A � ξµ � 1
2πα

� ξ
� m � Ym � x � ξ � � (3.26)

with A � 1
2πα

� ∂α  hhαβ ∂β, as before. Although it is not explicit in the equation, one should
note that Ym depends only on ξ0, since the other components of ξ vanish.

The ξ0-dependence of the current Y must be removed before any progress can be made. To
this end, we again introduce auxiliary fields η defined on the boundary, replace Y � ξ � by Y � η �
in the last term of (3.26), and complete the square:

Z
�
Y m � � �

M

Dξµ �
∂M

Dη0 �
∂M

Dν0 e � 1
2 ξµ � A � ξµ � iξ0 � ν0 � iη0 � ν0 � 1

2πα
� ξ

� m � Ym � x � η �
1)Note that the factor i which seems to be missing from the second term when compared to (3.11) is due to the

fact that we are working in Euclidean time: unlike Ẋ , X � does not acquire a factor i on Wick rotation.
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� �
M

Dξµ �
∂M

Dη0 �
∂M

Dν0 e
� 1

2 ξ̃µ � A � ξ̃µ � 1
2 ν0 � GN

� ν0 � 1
2

1

� 2πα
� � 2 Y m � G � �

D
� Ym � iη0 � ν0 �

where ξ̃µ � ξµ � iGN � ν0δµ0 � 1
2πα

� G �D � Ymδµm. Note that we have not bothered to introduce
auxiliary fields for the spatial coordinates, since the current does not depend on these, even
in (3.25). Also note that, while in the interior the Green function for Neumann and Dirichlet
conditions is the same, on the boundary we must be careful about the difference1) .

The ξ-integrals can now be performed, and produces the same factor Z0 as in the EM-field
case. The ν0-integrals can be performed totally analogously as well, yielding

Z
�
Y m � � Z0N �

∂M

Dη0 e
� 1

2 η0 � G � 1
N
� η0 � 1

2
1

� 2πα
� � 2 Y m � G � �

D
� Ym � (3.27)

Noting again that Y m only depends on η0, we may expand:

Y m � x � η � � Y m � x � � η0∂0Y
m � x � � 1

2

 η0 � 2 ∂2

0Y
m � x � � � � � �

Keeping only the first two terms and writing ∂0Y m � x � � vm, (3.27) becomes

Z
�
vm � � Z0N � Dη0 e

� 1
2 η0 � G � 1

N
� η0 � 1

2
1

� 2πα
� � 2 vmη0 � G � �

D
� η0vm �

At this point it is suitable to absord the integral over the spatial xm’s – which is just the volume
of space – into Z0

2).
The factor of N may be absorbed in the exponent, yielding

Z
�
vm � � Z0

� Dη0 e � 1
2 η0∆η0 � (3.28)

where ∆ � � � 1� 2πα
� � 2 v2GN � G � �D.

The Green functions obey GN � G � �D ��� � 2πα � � 2 � when used on non-constant functions η3).
The path integral may therefore be performed:

Z
�
vm � � Z0

� Dη0 e � 1
2 � 1 � v2 � η0 � η0 � ∏

n �� 0

1

 1 � v2
� (3.29)

With the same Riemann function trick as before this may be written as

Z
�
vm � � Z0

� dx0

 2πα �
� 1 � v2 � (3.30)

1)Explicitly, the propagator that obeys Dirichlet boundary conditions on the unit disk, is

� � 1 � z � z � � � 1
2π

ln � z � z � � � z � � z̄ � � � 1 � � 1 	
2)This is reasonable, since even if we wouldn’t take vm to be constant, we would still have Y m independent of the

xm, the latter being constant on the boundary.
3)This follows from the calculation of GN

� G̈N in the previous section, if we note that on the boundary
G � �D � � G̈N .
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where we have re-instated the integral over x0, which is the only part that remains of the xµ-
integrals after the spatial coordinates have been integrated out. Inserting this result into (3.24),
we find:

Γtree
�
vm � � Z0g � 1

c
� dx0

 2πα �
� 1 � v2 � (3.31)

After Wick rotating back to Minkowski time, the final result is

Γtree
�
vm � � Z0g � 1

c
� dx0

 2πα �
� 1 � v2 � (3.32)

The D-particle effective action is thus found to equal the action for a relativistic point particle
with mass m � 1

gc � α
�
1), provided that the velocity is slowly changing on the world-line: as

before, the result is exact in powers of v, but we have ignored acceleration terms and loop
corrections. Both of these correspond to corrections of order g0

c .

3.A Appendix: Completing squares with boundary currents

In this appendix we shall prove some of the equalities used to complete squares in the path
integrals of section � 3.2. Consider the following integral:

�
φ � iG � J � � A � �

φ � iG � J � � (3.33)

The operators G and A are related by A � G � G � A � � , with � the unit operator defined by� � f � f , (which means
�

M d2y δ � x � y � f � y � � f � x � ).
We may evaluate (3.33) as follows:

� 3 � 33 � � φ � A � φ � i � G � J � � A � φ � iφ � A � � G � J � � � G � J � � A � � G � J �
� φ � A � φ � iJ � G � A � φ � iφ � A � G � J � J � G � A � G � J

� φ � A � φ � 2iJ � φ � J � G � J �
Comparing the left- and right-hand sides, we find:

� 1
2

φ � A � φ � iJ � φ ��� 1
2

�
φ � iG � J � � A � �

φ � iG � J � � 1
2

J � G � J � (3.34)

Completing squares is thus possible for boundary currents. Note that G � J is defined on M,
not just on ∂M, so when using (3.34) inside the exponent of a path integral, there will be no
problem in changing variables from φ to φ̃ � φ � iG � J and performing the integral.

A similar result may be found when the current is not coupled to φ itself, but to some deriv-
ative (tangential or normal) ∂φ. We will write ∂1 � 2 � G to denote the derivative with respect to the
first (second) entry of an operator G. We may then write out

�
φ � i∂2G � J � � A � �

φ � i∂2G � J � �
1)The exact numerical prefactor (which is dimensionless) can be discovered by a loop level calculation, see eg

[19]. In the present formulation, it is less clear which numerical factors should properly be absorbed in Z0.
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The first term is as before. The second and third terms can be simplified by using

φ � A � ∂2G � J � φ � ∂2 � A � G � � J � φ � ∂2 � � J

� ∂ � φ � � � � J � ∂φ � J �
In this derivation, we have repeatedly used the fact that g � y � ∂x f � y � x � � ∂x � g � y � f � y � x � � .

The final term may be simplified because

� ∂2G � J � � A � ∂2G � J � � � J � ∂1G � � A � � ∂2G � J � � � J � ∂1G � � � ∂2 � A � G � � J �
� � J � ∂1G � � � ∂2 � � J � � ∂

� � J � ∂1G � � � � � J

� ∂
� � J � ∂1G � � � J � J � ∂1∂2G � J �

Taken together, this means that

� 1
2

φ � A � φ � i∂φ � J ��� 1
2
� φ � i∂2G � J � � A � � φ � i∂2G � J � � 1

2
J � ∂1∂2G � J � (3.35)

It is important to note that both (3.34) and (3.35) are completely independent of the form of J.
In particular, J may depend functionally on φ.

3.B Appendix: Supersymmetric extension

All of the above calculations were performed in the context of bosonic string theory. To be
relevant to the physics of the real world, they should be ported to superstring theory. In this
appendix we shall extend the calculation of � 3.2 to the supersymmetric theory.

3.B.1 Supersymmetry in string theory

Recall that the bosonic string may be supersymmetrized by adding a fermionic term to the
action. On a world-sheet with Euclidean metric, the supersymmetric open string action reads

Ssusy � 1
4πα �

� dτdσ � ∂αXµ∂αXµ � ψ̄µρα∂αψµ
� � (3.36)

The Dirac matrices that obey � ρα � ρβ � ��� 2δαβ are

ρ0 � � 0 1� 1 0 � � and ρ1 � � 0 i
i 0 � �

and the infinitesimal supersymmetry transformation is given by

δXµ � � iε̄ψµ

δψµ � � iραε∂αXµ � (3.37)

In the following we will often use that for Majorana spinors (which are real), ψ† � ψT , so
ψ̄χ � ψAρ0

ABχB � χ̄ψ, since ρ0 is antisymmetric and the components of ψ and χ are (anticom-
muting!) Grassmann numbers. Similarly, we may show that ψ̄ραχ � � χ̄ραψ, ψ̄ραρβχ � χ̄ρβραψ,
etcetera.
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3.B.2 Supersymmetry in open strings with electromagnetic boundary charge

We return now to the calculation of � 3.2. To supersymmetrize (3.11), we must add a fermionic
boundary term as well as a fermionic bulk term. The resulting action is

Ssusy � 1
4πα �

�
Mχ

d2σ � ∂αXµ∂αXµ � ψ̄µρα∂αψµ
� � i �

∂Mχ

dσα
�

∂αXµAµ � 1
2

ψ̄µραψνFµν � � (3.38)

(Note that in Euclidean metric ρα � ρα.)
Choosing a gauge in which Aµ � � 1

2 FµνXν – which is possible globally if Fµν � cst as in � 3.2
– and noting that on the boundary ∂nX � 0, it is a trivial exercise to insert (3.37) into (3.38) and
show that it is indeed supersymmetric.

Having limited ourselves to the case Fµν � cst, there is no interaction between bosonic and
fermionic variables left in the action. Therefore the path integral may be split, and the bosonic
part of the calculation proceeds as before, upto (3.20).

The fermionic path integral looks as follows:

�
M

Dψ e
1

4πα
�

�
d2σ ψ̄µρα∂αψµ � i

2 � dt ψ̄µρ
�
ψνFµν �

in which ρ
�

denotes the Dirac matrix tangential to the boundary: dt ρ
�

� dσα ρα.
Just as for the bosonic case, the interior parts of the integration may be performed, leaving

just the path integral over the boundary parts of ψ. Introducing

G � 1
F �

� 1
4πα �

ρα∂α ���� ∂M

�
the result may be written as

Zfermion
� �

∂M

Dψ e � ψ̄µ � G � 1
F
� ψµ � i

2 Fµνψ̄µρ
� � ψν �

Writing Fµν in standard form as before, half of the ψ’s may be integrated away, leaving

Zfermion
�

D
�
2

∏
k � 1

�
∂M

Dψk e � ψ̄k
� G � 1

F
� ψk � 1

4 f 2
k ψ̄k

� GT
F
� ψk

Taking out some factors of
�

detG � 1
F this may be rewritten as

Zfermion � D
�
2

∏
k � 1

�
∂M

Dψk e � ψ̄k
� ψk � 1

4 f 2
k ψ̄k

� � GT
F
� GF � � ψk (3.39)

where � Z0 � fermion, the square root of the determinant of the propagator in the bulk has been
suppressed.
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It is possible to show that

� GT
F � GF � : � t � t � ���� � 4 � 2πα � � 2δ � t � t � � �

Therefore (3.39) reduces to

Zfermion � D
�
2

∏
k � 1

�
∂M

Dψk e � �
1 � � 2πα

�

fk � 2 � ψ̄k
� ψk � (3.40)

To conclude the calculation, note that for Majorana fermions

� Dψ e � ψ̄ �A � ψ �  detA �
Expanding (3.40) in Fourier modes, and noting that the zero mode is present, we find that

Zfermion � D
�
2

∏
k � 1

∏
n

�
1 � � 2πα � fk � 2 �

This should be multiplied with (3.20) to produce

Zsusy � D
�
2

∏
k � 1

�
1 � � 2πα � fk � 2 �

As before (cf (3.21)), this can be rewritten in terms of Fµν, yielding exactly (3.22), but without
any regularization. It is important to note that this happens because there is a one-to-one map-
ping between fermionic and bosonic modes.

3.B.3 D-branes and supersymmetry

In essentially the same way the calculation of � 3.3 may be repeated in a superstring context.
Again, no regularization is needed to obtain the finite result (3.30).



CHAPTER 4

N D-PARTICLES

Points
Have no parts or joints.
How then can they combine
to form a line?

— J. A. Lindon

In this chapter we shall consider a system of N D-particles. It will be found that a low-energy
effective action for such a configuration is given by the Yang-Mills action reduced to 0 � 1
dimensions. After a short introduction about Yang-Mills theory, we shall give an argument for
the above statement using T-duality. Having arrived at the effective action using mathematical
techniques, we shall then proceed to try to understand the results from a more physical point of
view.

4.1 Yang-Mills theory – recap

This section gives a minimal introduction to Yang-Mills theory, mainly intended to lay down
conventions. The material presented here can be found in many books on quantum field theory,
eg [20]. For a more in-depth treatment, see [25].

4.1.1 General relations

Recall that � Dµφ ��� Dµφ (with φ a (complex or real) scalar function) is invariant under
φ � e � iα � x � φ if Dµ is defined by

Dµ � ∂µ � iAµ �
and Aµ transforms as

Aµ � Aµ � ∂µα �
This simple picture can be extended if we replace the scalar φ by a vector φ � � φi � , with
i � 1 � � � r, and replace α by α � αaTa, with a � 1 � � � n, and Ta a set of � r � r � -matrices, that
represent the generators of a Lie algebra on the space of φ’s. Note that this means that the Ta’s
obey �

Ta
� Tb

� � i fabcTc
�

with fabc the structure constants of the algebra.

47
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Ensuring that
Dµφ � e � iαDµφ (4.1)

under φ � e � iαφ now presents a slightly more demanding problem than in the Abelian case.
Write Dµ � ∂µ � iAµ, which now means

� Dµ � i j � δi j∂µ � iAa
µ � Ta � i j �

With this definition of the covariant derivative, (4.1) holds if Aµ transforms as

Aµ � e � iαAµeiα � ie � iα∂µeiα � (4.2)

The covariant1) field strength Fµν is now given by

Fµν � i
�
Dµ
� Dν

� � ∂ � µAν � � i
�
Aµ
� Aν

� �
The extension of the Maxwell Lagrangian (L ��� 1

4 FµνFµν) to the non-abelian case is

L ��� 1
2

TrFµνFµν � (4.3)

with the trace acting on the matrices Ta. (4.3) is called the Yang-Mills Lagrangian.

4.1.2 Dimensional reduction

For the purpose of describing Yang-Mills theory living on a D-brane instead of the entire space-
time, (4.3) should be dimensionally reduced. This means that the field Aµ � Xν � is split into
Ai � X j � , with i and j running from 0 to p, the dimension of the brane, and a set of scalars
Φm � X i � , with m � p � 1 � � � D � 1 (D being the dimension of space-time). Splitting Aµ obviously
affects Fµν as well, and in fact Fµν is split into

Fi j � ∂ � iA j � � i
�
Ai
� A j

� �
Fim � ∂iΦm � i

�
Ai
� Φm

� �
Fmn ��� i

�
Φm
� Φn

� �
4.1.3 Dimensional reduction to 0+1 dimensions

In the following, the above will be applied in the context of D-particles, where p � 0, and the
only component of the vector potential that survives is A0. Since it is possible to gauge the
latter away, it will be suppressed in the discussion. We are then left with

F0m � 1
2πα �

∂0Ym
�

Fmn � � i
� 2πα � � 2

�
Ym
� Yn

� �
with m and n now ranging from 1 to D � 1. The scalars have been renamed and rescaled to
emphasize their later interpretation as spatial coordinates.

1)meaning transformation according to F � e � iαFeiα.
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The Lagrangian becomes

L � Tr

�
1

� 2πα � � 2 � ∂0Ym � 2 � 1
2

1
� 2πα � � 4

�
Ym
� Yn

� 2 � � (4.4)

This ends our short recap of Yang-Mills theory. In the next section we shall see how a dimen-
sionally reduced Yang-Mills action arises from open strings coupled to D-0-branes.

4.2 The open string and N D-particles

We would like to extend the calculation of � 3.3 to N branes, but unfortunately the techniques
used in the calculation cannot be straightforwardly generalized to the non-abelian case, because
it is not immediately obvious how the Wilson line should be generalized. However, we may
proceed by invoking T-duality: by investigating the properties of the generalization of (3.10)
and (3.11) to a U � N � vector potential, and T-dualizing the result, we arrive at an action which
can be interpreted as a low-energy effective action for a set of N D-particles.

In this section, we shall take all radii to infinity immediately after T-dualizing, thus avoiding
the intricacies connected with quantization with periodic boundary conditions1) . In � 4.4 we
shall return to compact space and find that the effective dynamics are very different from what
we shall find here for the non-compact situation.

4.2.1 Open strings in a U(N) gauge field background

As in chapter 3, we shall limit our attention to the vector potential Aµ. With Aµ a U � N � field,
(3.13) should be replaced by

Z
�
Aµ

� � � Dξ e � 1
2 ξµ � A � ξµ TrPe � iξ̇µ � Aµ � x � ξ � � (4.5)

The trace is over the U � N � Lie algebra indices, and P denotes path ordening: for non-
commuting A , the expression eA is ill-defined unless some ordering convention is specified.
The path ordered exponential is defined by

Pe
�

dt A � t � � ∞

∑
n � 0

T�
0

dt1

t1�
0

dt2
� � � tn � 1�

0

dtn A � t1 � � � � A � tn � � (4.6)

(Note that for Abelian A the ordering becomes immaterial, and (4.6) reduces to the well known
expansion for e

�
dt A . In chapter 3 we took U � 1 � as the gauge group, so there was no need to

write TrP explicitly.)
Tseytlin has shown in some detail [26] that (4.5) yields a Yang-Mills action. T-dualizing this

result yields the dimensionally reduced Yang-Mills action that was derived in � 4.1. We shall
check on this by T-dualizing (4.5) and expanding the result.

1)Periodic boundary conditions entail taking the possibility of (multiply) wound strings into account, which
complicates matters considerably.
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4.2.2 Open strings in the T-dual of U(N) gauge theory

T-dualizing all spatial directions transforms (4.5) into

Z
�
Y m � � � Dξ e � 1

2 ξµ � A � ξµ TrPe � 1
2πα

� ξ
� m � Ym � x � ξ � � (4.7)

In this expression the Ym’s are in the adjoint representation of U � N � , that is Ym � Y a
mTa, with Ta

the generators of the Lie algebra of U � N � .
In the above expression, the term ξ̇0 � A0 has been suppressed, since the equation of motion

for A0 only yields a constraint equation (Gauss’s law), and we may choose a gauge in which all
of the Aa

0’s are zero.
In order to show that (4.7) yields the dimensionally reduced Yang-Mills action of the pre-

vious section, we shall first compute the lowest order term in the expansion of (4.7), and then
invoke gauge symmetry to complete the calculation.

1. The lowest order term of the effective action
The proposed computation can be facilitated considerably if we first split Ym into a U � 1 � part
and a SU � N � part:

Ym � Y cm
m � � Y a

mTa
�

where from now on the Ta are the generators of SU � N � . (4.7) can then be rewritten as

Z
�
Y m � ��� e � 1

2πα
� ξ

� m � Y cm
m TrPe � 1

2πα
� ξ

� m � Y a
mTa � �

The expansion becomes

Z
�
Y m � ��� �� 1 � 1

2
1

� 2πα � � 2
� dt dt � ξ � m � t � ξ � n � t � � Y cm

m � t � Y cm
n � t � � �� Tr ���

� � 1
� 2πα � � 2

�
t � t

�

dt dt � ξ � m � t � ξ � n � t � � Y a
m � t � Y b

n � t � � TrTaTb � � � � � � (4.8)

There are now two ways to proceed. The most obvious one is simply to expand the Y ’s as
Y � t � � y � ξ0v � 1

2 � ξ0 � a � � � � , and compute (4.8) from scratch. Some infinities occur in the
calculation of � � dt dt � ξ � � t � ξ � � t � � � and � � dt dt � ξ � m � t � ξ � m � t � � ξ0 � t � ξ0 � t � � � , but these can be dealt
with in a straightforward manner. Even so, it is much easier to note that for the N � 1 case the
second term in (4.8) disappears, and we are left with the first term, which should match the
expansion of the previous U � 1 � result, that is (3.30).

The first thing to do is to rewrite (4.8) in a more transparent form. To this end we investigate� ξ � m � t � ξ � n � t � Ym � t � Yn � t � � � � (4.9)

where Ym could be either Y cm
m or one of the Y a

m’s. Expand Y m � t � � ym � ξ0vm � � � � , and note that� ξ0 � t � ξ0 � t � � � � GN � t � t � � �� ξ � m � t � ξ � n � t � � � � G � �D � t � t � � δmn �� ξ � m � t � ξ0 � t � � � � 0 �
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With these facts (4.9) becomes

GN � t � t � � ymym
� GN � t � t � � G � �D � t � t � � vmvm �

In the U � 1 � case (4.8) is thus found to equal

ZU � 1 �
�
ym

cm;vm
cm

� � �� � 1 � � 1
2

1
� 2πα � � 2

� dt dt �
�
GN � t � t � � � ycm � 2 � GN � t � t � � G � �D � t � t � � � vcm � 2 � �� Tr � �

(4.10)
We shall use a trick to compute the Green functions: comparing (4.10) with (3.30), which
expands to

Z
�
vm � � Z0

�
1 � 1

2
v2 � � � � � �

we find that � dt dt � GN � t � t � � � 0 �
and � dt dt � GN � t � t � � G � �D � t � t � � ��� � 2πα � � 2 � 1 � �
As noted before, both of these results could also have been found by direct calculation. (The
latter has actually been found in chapter 3.)

Armed with this knowledge, tackling the second term in (4.8) is easy: normalizing the gen-
erators of SU � N � in such a manner that

TrTaTb � 1
2

δab

it can be written as

� ∑
a

1
2

1
� 2πα � � 2

�
t � t

�

dt dt � ξ � m � t � ξ � n � t � � Y a
m � t � Y a

n � t � � � �
The integrand is now symmetric in t � t � , so the integration can also be symmetrized, yielding

� ∑
a

1
4

1
� 2πα � � 2

� dt dt � ξ � m � t � ξ � n � t � � Y a
m � t � Y a

n � t � � � �
Each of the terms in the sum can individually be treated in exactly the same way as the U � 1 �
part, resulting in

∑
a

� 1
4

� va � 2 � 1 � �
Taking it all together again, we find that

Z
�
Y m � � � N �

1 � 1
2
� vcm � 2 � � 1

4 ∑
a
� va � 2 � � 1 � � (4.11)
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where we have used the fact that Tr � � N.
This expression treats the U � 1 � and the SU � N � parts on unequal footing. It is not necessary to

do so. In fact, SU � N � can be extended to U � N � by adding a generator T0 � 1� 2N
� , and replacing

Y cm
m � by Y 0

mT0 in the splitting of Ym. (4.11) is then replaced by

Z
�
Y m � ��� N � 1

4 ∑
a
� va � 2 � � 1 � �

where a sums over U � N � indices again.
The full tree-level effective action – upto lowest order, that is – is then given by (cf (3.32))

Γtree
�
vm � � Z0g � 1

c
� dx0

 2πα �
� N � 1

2
Tr � Ẏm � 2 � � (4.12)

where vm
a has been replaced by its origin Ẏ m

a , and the sum has been replaced by the U � N � -trace
that yielded it. Note that the above expression is valid only for slowly changing Ẏ .

2. Making the effective action gauge invariant
Upto order Y 2 (and � ∂Y � 2), (4.12) has the same structure as (4.4). (Note that the constant term�

dt N may be discarded as irrelevant.) Since (4.12) is derived from (4.7), which is a gauge
invariant expression, it makes sense to add higher order terms to (4.12) to render it gauge
invariant as well. Tr � Ẏm � 2 is not gauge invariant on its own, but comparison with (4.4) shows
that adding a

�
Y � Y � 2 term produces a gauge invariant combination. We therefore replace (4.12)

by

Γtree
�
Ym

� � Z0g � 1
c
� dx0

 2πα �
� N � 1

2
Tr � Ẏm � 2 � 1

4
1

� 2πα � � 2 Tr
�
Ym
� Yn

� 2 � � (4.13)

This operation is valid, as long as we keep in mind the possibility that there may be other Y 4

terms in the expansion of (4.7) – which would probably require even higher order terms to
restore gauge invariance.

Apart from the normalization and the irrelevant volume term
�

dx0 N, (4.13) matches (4.4).

3. A word on higher order terms
We shall not investigate the higher order terms that may appear as corrections to (4.13) in any
detail. Let it suffice to note that a Y n term is always expressed as some tensor times TrTa1

� � � Tan .
Such a trace is proportional to � 1

N � n
�
2 � 1. This means that for large N the higher order terms

become small.

4. Proper normalization
The normalization and the sign of the D-particle action is of some importance for what follows.
We shall therefore not accept (4.13) without further questioning. (4.13) is the first term in
an exponential expansion: it contains contributions from connected diagrams only, while in a
higher order approximation one would also have to include contributions from disconnected
diagrams, which correspond to D-particles which meet several disconnected open strings along
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their world-lines. This reasoning shows that although a part of the prefactor in (4.13) properly
belongs in the exponent, another part actually belongs in front of the entire expansion. The
latter factors should not be included in the final expression for the action.

We do not know the full expression for the series expansion, so we must resort to general
reasoning to find the proper normalization: Polchinski argues [19] that the physical definition
of the string coupling constant is the mass ratio between the fundamental string and the D-
string. One might also argue that the most elementary tree level term in the effective action
expansion should have one factor of g � 1

c in front of it, and no other dimensionless factors.
These arguments lead us to replace (4.13) with

S
�
Ym

� � g � 1
c
� dx0

 2πα �
Tr

�
� Ẏm � 2 � 1

2
1

� 2πα � � 2

�
Ym
� Yn

� 2 � � (4.14)

where the volume term has been discarded, and the sign has been flipped to ensure that the
Hamiltonian obtained from the action by canonical conjugation has positive kinetic energy.
The normalization of (4.14) matches (4.4) while preserving the natural gc and α � dependence.

4.3 Interpretation of the dimensionally reduced Yang-Mills action

In the previous section we have derived the action for a system of D-particles in a formal way.
Here, we shall try to gain some insight in the physical reasons leading to (4.14).

Consider a system of a number of D-particles with a large spatial separation. To be specific, let’s
take the simplest example: two D-particles at a distance a from each other. In the low energy
limit, and for large a, the particles do not feel one another’s presence, and may be described
separately by the action of � 3.3. The combined action has a U � 1 � � U � 1 � gauge symmetry [27].
For finite a, however, there may also be strings stretching from the one brane to the other.
Such strings have U � 1 � � U � 1 � charges � 1 � � 1 � or ��� 1 � 1 � , and according to (2.6), have ground
state mass equal to a times the string tension. Note that as the branes approach one another,
the strings stretched between them become massless, the difference between the stretched and
non-stretched string vanishes, and the full U � 2 � symmetry is restored.

In a more general setting, we may have N D-particles at positions � ym� 1 � � � � � � ym� N � � . Such a

configuration has a U � 1 � N symmetry. Strings stretching from brane i to brane j have mass
Mi j � T � �y � i � � �

y � j � � . Introducing
�

φi j to represent these states, we could try to write down a
potential term for them:

V
?� ∑

i �� j

1
2

M2
i j � φi j � 2 � (4.15)

(4.15) is slightly inaccurate, since excitations parallel to the stretched string only correspond to
reparametrization of the world-sheet, and hence should not have a mass term associated with
them. To account for this fact, we replace (4.15) by

V � ∑
i �� j

1
2

M2
i j

�

φi j
� � � � � �

y � i � � �

y � j � � � �

y � i � � �

y � j � �
� y � i � � y � j � � 2

� � �

φi j � (4.16)



54 N D-PARTICLES

Actually, precisely such a potential term is found when we expand (4.14) around a classical
solution, ie around some point in configuration space where the Ym’s commute. In such a point
the matrices Ym may be simultaneously diagonalized, and we may write them as

� Y m � i j � ym� i � δi j
�  gc ϕm

i j (no summation) � (4.17)

The ym� i � ’s can then be interpreted as the positions of the branes. (Obviously, after including the
correction terms, the Y m’s cannot be interpreted in this way, since they have become matrices.)

Expanding the potential term in (4.14) as suggested in (4.17) to order ϕ2 yields (4.16), with
�

φi j � �

ϕS
i j
� i

�

ϕA
i j;

�

ϕS and
�

ϕA being the symmetric and antisymmetric parts of the matrices
�

ϕ.
(Note that the expansion in power of φ is equivalent to an expansion in powers of gc: the factor

 gc in (4.17) – which has been chosen to get the correct normalization for the mass of the
stretched strings – shows how the open strings are corrections to the D-particle action which
become small in the weak coupling limit.

There are also cubic and quartic terms in the expansion. Most of these should probably
be interpreted as interaction terms. However, a subset of the cubic terms can be identified as
follows: when a string is stretched between D-branes i and j, some change in energy is involved
in moving these branes. One may argue that this comes down to a correction of the mass of the
φi j-states proportional to the amount by which the length of the string is changed. In fact the
expansion of (4.14) contains the required terms:

∑
i �� j  gc T 2 � �

y � i � � �

y � j � � � � �

ϕii � �

ϕ j j �
�

ϕi j
� �

ϕ ji �

Obviously all of this does not prove conclusively that (4.14) is the proper action to describe a
system of N D-particles. It might be possible to find a full physical proof of (4.14) by carefully
investigating the stringy interactions, but we shall not pursue this track. The evidence that
we have accumulated here should be enough to give us confidence in the relevance of the
mathematical proof presented in � 4.2.

4.4 D-particles on a compact space

As promissed in � 4.2, we shall now consider a configuration of N D-particles on a par-
tially compactified space-time. According to T-duality, a quantum description of N D-particles
on a space-time with a compact direction1) with radius R should also describe the � 1 � 1 � -
dimensional Yang-Mills theory living on a D-string, in a space-time with a compact direction
with radius R � � α

�

R . That is, there should be a way to rewrite the D-particle action in such a
way, that it acquires the form of the D-string action. The following calculation was first presen-
ted by W. Taylor [28]. Before we plunge into it, I’d like to draw attention to another article in
which the large N limit of D-particles is considered: in [12] the authors argue for an equilance
between the large N limit of D-particle quantum mechanics and M-theory.

Consider a system of N D-particles on S1 � � 8 � �
, where S1 has radius R, that is, X 1 �

X1 � 2πR. The dynamics of this system may be captured by placing an infinite number of copies

1)There may or may not be additional compact dimensions; only one is needed for the argument.
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of
�
0 � 2π � � � 8 adjacent to one another and imposing periodicity. Each of the N D-particles

then acquires an infinite number of copies, and strings wound around the S1 are represented by
strings stretching between different copies of the particles. All of the dynamical information of
the particles and the strings may be conveniently collected in a set of matrices � Y m

IJ � i j , where i
and j count from 1 to N, corresponding to the original labelling of particles, while I and J take
values in

�
, and enumerate the copies of the space-time.

In the following we shall often need to treat the compact direction (X 1) differently than
the other ones. We shall therefore introduce α and β to sum over the transverse directions:
α � β � 2 � � � 9. (m and n run from 1 through 9 as before.) As always, summation over repeated
labels is implied. The U � N � labels (i and j) will mostly be suppressed, and Tr is written to
represent the trace over these suppresed labels.

The requirement of periodicity1) is summed up by the following relations:

Y m
IJ � Y m� I � 1 � � J � 1 � � 2πRδm1δIJ

�
or

Y m
IJ � Y m

0 � � J � I � � 2πRIδm1δIJ � (4.18)

The additional term is needed to ensure that Y 1
II actually take values in the I’th copy of the

space-time.
Note that the Y m’s are Hermitian when considered as one big matrix. With the block labels

separated however, we have
� Y m

IJ � † � Y m
JI �

Having spent some time introducing notation, we may now attempt to tackle the action describ-
ing our system. We shall start of from the action (4.14), which extends to

S � � dt � TrẎ m
IJ Ẏ m

JI
� 1

2
1

� 2πα � � 2 TrY �mIJ Y n �
JKY �mKLY n �

LI � � (4.19)

after adding the S1 block labels2) . The notation A �mBn � is used as A �mBn � � AmBn � AnBm.
(4.18) shows that there is a large amount of redundancy in the Y m

IJ ’s: all of the Y m
IJ can be

expressed in terms of Y m
0J � Y m

J . Straightforwardly expanding (4.19) in terms of these Y m
J ’s and

recollecting terms yields

S � � dt � TrẎ m
I Ẏ m� I � 1

� 2πα � � 2 TrSα
I Sα� I � 1

2
1

� 2πα � � 2 TrT αβ
I T αβ� I � � 3) (4.20)

with
Sα

I � ∑
J

Y � 1J Y α �
I � J � 2πRIY α

I
�

1)Periodicity, that is, both of the particles and the strings.
2)Actually, for proper normalization, (4.19) should be divided by the (infinite) number of copies that have been

made of the space-time.
3)In the process, the infinite factor mentioned above surfaces clearly and is taken care of: the normalization of

(4.20) is correct.
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and
T αβ

I � ∑
J

Y � αJ Y β �
I � J �

The action (4.20) should be compared to the action for U � N � gauge theory on a D-string, which
reads

S � � dt � dx
2πR �

� Tr ẊαẊα � Tr Ȧ1Ȧ1 � Tr 
 ∂1Xα � i
�
A1 � Xα � � 2 � 1

2
1

� 2πα � � 2 Tr
�
Xα � Xβ � 2 � �

(4.21)
It is easy to show that (4.20) and (4.21) are equivalent under the identifications R � α

�

R
� and

∑
K

eiKx
�
R

�

Y 1
K � 2πα � A1 �

∑
K

eiKx
�
R

�

Y α
K � Xα �

We have thus shown by direct calculation that a system of D-particles on S1 � � 8 is equivalent
to Yang-Mills theory on D-strings on the same manifold, but with inverse compactification
radius. (Obviously, the non-compact Yang-Mills theory emerges when we take R to zero.) As a
side-remark, note that the steps performed above may be repeated: the algebra becomes more
intricate, but it is obvious that compactifying other directions will show a connection between
D-particle dynamics and Yang-Mills theory on any D-k-brane, including the (space-filling!)
9-brane.

4.5 Geometric interpretation of the D-particle gauge theory

At first sight, one might think that the above calculation amounts to an independent proof of
T-duality. This, however, is not the case. T-dualizing is actually the same as Fourier transform-
ation: both relate a theory on a space with radius R to a theory on a dual space with radius
R � � R � 1 and exchange momentum with winding number (or – after decompactification – with
position). We shall make this connection explicit by showing that the position and winding
number operator Y m

J is the Fourier dual of the momentum operator Dm � x � in the dual space:

YIJ � Y0 � � J � I � � JδIJ � D � A � x � � ∂ � (4.22)

The rest of this section will be spent on making this connection more precise, and showing
how a subset of the gauge transformations in the Yang-Mills theory corresponds to changing
the positions of the particles in the D-brane theory.

4.5.1 Y is the Fourier dual of D

With x1 a compact direction with radius R � , the Fourier transform of Am � x1 � is

Ãm
K �

2πR
�

�
0

dx1

2πR �
eiKx

�
R

�

Am � x1 � �
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in which the dependence of Aµ on the time t � x0 has been suppressed.
The integer K has an obvious interpretation as a momentum. However, we may also identify

Ãm
K with the Y m

0K ’s of the previous section. In this picture, K labels the copies of S1. We will find
that it is also connected to winding number.

To complete the correspondence sketched in (4.22), note that Fourier transform of Y m
IJ is

Ỹ m � x � y � �
�
Ỹ m � x � y

2 � � 2πRδm1 R � i∂1
� 2πδ � x � y

2R � � �
Identifying

� dy
2πR �

Y m � x � y
2 � 2πδ � x � y

2R � � � 2Ỹ m � x � � 2πα � Am � x � �
and noting that 2πRR � � 2πα � , we find that the Fourier transform of Y m

i j can be identified with
2πα � i

�
δm1∂1 � iAm � x1 � � . Both terms in this expression depend on one spatial coordinate only,

which signifies that it lives on a D-string: fields on a D-brane only depend on longitudinal
coordinates.

With this identification, it is obvious that 1� 2πα
� � 2 ∑Tr

�
Y � Y � 2 equals

�
Tr

�
D � D � 2, that is, the last

term in (4.14) is equivalent to the spatial part of TrF 2 in a Yang-Mills theory. So this is what T-
duality is about: replacing a component of the covariant derivative by a coordinate transversal
to the smaller brane. Clearly, it is possible to repeat this exercise and Fourier-transform any
of the other eight directions, ultimately relating D-particle quantum mechanics to Yang-Mills
theory in ten-dimensional space-time.

4.5.2 The interpretation of gauge transformations in the D-particle theory

To really understand the correspondence, it is useful to investigate what happens to gauge
transformations in the Y picture. For simplicity, let us consider SU � 2 � gauge theory on the
D-string. This theory contains the fields A3

m � x � and A �m � x � 1).
A gauge transformation of the form Λ � eipxT3 sends

A3
1 � A3

1
� p

A3
α � A3

α (4.23)

A �m � e � ipxA �m �
as can be seen from the commutation relations

�
T3
� T�

� � � T� . (Note that T� � 1
2

�
σ1 � iσ2

� .)
For the moment, we shall limit our attention to the case pR � � k �

�
, which renders the

A3
m transformation equal to the identity, while making the A �m transformations single-valued in

space. Taking the Fourier transform, the above transformation is then found to correspond to

� Y1 � 3
0 � � Y1 � 3

0
� 2πα � k

�
R �

� Ym � 3
j � � Ym � 3

j for j
�� 0 or m

�� 1

� Ym � � j � � Ym � � j � k �
1)We keep ignoring the A0 fields, since they can always be gauged away.
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Since

T3 � 1
2
� 1 0

0 � 1 � � T� � � 0 1
0 0 � and T� � � 0 0

1 0 � �
we find that � Ym � 3

J � ym� 1 � J � ym� 2 � J , while Y� are equal to the ϕ12 and ϕ21 of � 4.3 respectively.
We thus find that in the D-particle picture the zero modes of the position elements transform

according to �
y1� 1 � 0 � y1� 2 � 0 � � �

y1� 1 � 0 � y1� 2 � 0 � � 2πkR �
in other words: one of the D-particles is moved k times around the S1. We would expect that
such a move affects the strings stretching between these particles, and in fact it does, for

� ϕm
12 � j � � ϕm

12 � j � k (4.24)

and
� ϕm

21 � j � � ϕm
21 � j � k

� (4.25)

that is, strings stretching between the two D-particles acquire extra winding when one of the
particles is moved around the S1. Graphically, this may be depicted as follows:

x � 0 x � 2πR

1

2

�
x � 0 x � 2πR

1

2

(The dotted lines symbolize periodic identification.)
Obviously, the gauge symmetry is spontaneously broken: the two configurations sketched

above are clearly unequal, while the action (4.19) is invariant under the gauge transformation.

We have shown that the ‘Abelian’ gauge transformation A3 � A3 � k
�
R � has a clear geometric

interpretation in the D-particle picture. It should be noted that the D-particle counterpart of a
more general gauge transformation is less clear. For example, taking Λ � eiαT� mixes the A3

and A � fields. On the D-particle side this corresponds to mixing the y � i � ’s with the ϕi j’s. It
is difficult to visualize such mixing of D-particle positions and string excitations, and in fact,
when we consider the diagonal and off-diagonal components of the matrices Y on equal footing
as required by these gauge transformations, the expansion (4.17) breaks down, and we should
be very careful in trying to describe the theory from a classical point of view.

For non-integer pR � , the � Y �m � J’s mix non-trivially. This is caused by the fact that moving
a D-particle changes the mass ratio of strings stretching between that particle and its various
neighbours1) . The expectation values of these strings are altered correspondingly.

Finally note that although we have only investigated the case of SU � 2 � , the considerations
above are equally applicable to situations with more D-particles. In such cases there are more
gauge transformations that act only on the diagonal components of A. All of these can be
interpreted as moving some of the D-particles around. In all cases the strings stretching between
these particles have their winding numbers changed as in (4.24) and (4.25).

1)In particular, moving particle no. 2 to the right increases the mass of the 1-2-string, and decreases the mass of
the 2-1 � -string.
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4.6 N D-particles in superstring theory

The calculation of the previous sections were performed within the context of bosonic string
theory, but – as shown by the example in appendix 3.B – it can also be regarded as the bosonic
part of the calculation in superstring theory. We shall not perform the fermionic part of the
calculation here, but simply state that supersymmetrization of (4.14) yields [29]

Γ � � dx0

 2πα �
Tr � 1

gc

�
� Ẏ m � 2 � 1

2
1

� 2πα � � 2

�
Y m � Y n � 2 � � iψψ̇ � 1

2πα �
ψγm

�
Ym
� ψ � � � (4.26)

in which ψ � ψaTa are 16-component spinors in the adjoint of SU � N � , and γi are symmetric
� 16 � 16 � -matrices acting on these spinors, satisfying� γi

� γ j
� � 2δi j �

Explicit expressions for these matrices may be found in [7], appendix 5.B. Note that many
authors prefer to work with 32-component spinors Ψ, related to our ψ’s by

Ψa �  gc ψa � � 1
0 � �

Also note that we use the conventions of � 4.1 for covariant derivatives, in particular

Dµψ � ∂µψ � i
�
Aµ � ψ � �

and that transposition of the left-hand side spinors is left implicit.
The above action has been written down explicitly in temporal gauge (A0 � 0), but it is not

difficult to obtain the complete expression from the Lagrangian for supersymmetric Yang-Mills
theory:

L ��� Tr � 1
2

FµνFµν � iΨ̄ΓµDµΨ � �
where Ψ̄ � ΨΓ0, and Γ0 � � 16

� σ2 and Γi � γi
� iσ1.

Gauss’s law can then be found to read

Ga � fabc

�
1

� 2πα � � 2Y m
b Y m

c � i
2

ψbψc
� � � 0 �

with fabc the structure constants of SU � N � : �
Ta
� Tb

� � i fabcTc. This is the equation of motion for
A0 in temporal gauge. Physical states – which have to be gauge invariant – must satisfy Gauss’s
law: they must be annihilated by the Ga’s.

Upto gauge transformation, (4.26) is invariant under the supersymmetry:

δAm ��� i  gc εγmψ �
δψ � � 1

�
gc

�
1

2πα �
Ẏ mγm � i

2
1

� 2πα � � 2

�
Y m � Y n � γmn

� ε �
with ε a constant 16-component spinor.

Using these formulas, it is not difficult to find the supersymmetric extension of the calcula-
tion presented in the previous sections.



CHAPTER 5

SCATTERING AND BOUND STATES

Nobody would believe in the world
if they hadn’t spent years getting used to it.

— J. Gaarder, ‘The solitaire mystery’

In this chapter we shall investigate some aspects of the spectrum of the system presented in the
previous chapter. We shall consider the dynamics both in the bosonic case and in the super-
symmetric case, and find that these are very different: a system of bosonic D-particles does not
allow for scattering states, since quantum mechanically two D-particles are held together by
an attractive potential that rises linearly as the particles are moved away from one another. On
the other hand, supersymmetric D-particles do not feel such an attractive force in the ground
state, and may escape to infinity unhindered. This raises the question of the existence of bound
states of such particles. The final section of this chapter describes a scattering experiment of
supersymmetric D-particles, which suggests that there may be bound states of these particles
after all.

5.1 Bosonic D-particles cannot escape

Let us return to the action for N bosonic D-particles as derived in � 4.2:

S � 1
gc

� dt

 2πα �
Tr � � Ẏm � 2 � 1

2
1

� 2πα � � 2

�
Ym
� Yn

� 2 � � (5.1)

As noted previously, the potential is zero not only in the origin Ym � 0, but more generally
when the Ym’s commute, eg when they are diagonal. Therefore, in the classical theories there
are many paths along which the potential is zero, so there are many classical solutions in which
particles approach one another from infinity and escape to infinity after interacting. Although
it is always difficult to sketch high dimensional pictures, an attempt to depict the potential is
made in figure 5.1.
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Figure 5.1: An impression of the potential term in (5.1): the plot shows V � x2y2. To make the
picture more visually pleasing, the potential has been cut off at V � 1.

5.1.1 Analysis of the classical action

Even classically, the dynamics of (5.1) is highly non-trivial, and we shall give some indication
of why this is so. For simplicity, consider the case N � 2, so Y can be written as

�

Y �
�

�

ξ
�

α � i
�

β
�

α � i
�

β � �

ξ � �
Expressed in terms of

�

ξ,
�

α and
�

β, the action for this system is found to be

S � 1
gc

� dt

 2πα �

�
2 
 ξ̇2 � α̇2 � β̇2 � � 8

� 2πα � � 2 
 α2� � β2� � ξ2 � V � 4 � � α � β � �
with

V � 4 � � 2
� 2πα � � 2

� �
� �

α � i
�

β � � � �

α � i
�

β � � 2 � � �

α � i
�

β � 2 � �

α � i
�

β � 2 � �
and

�

α � is the part of
�

α perpendicular to
�

ξ, ie
�

α � � �

α � � ξ̂ � �

α � ξ̂, and similarly for
�

β � .
Upto order α2 and β2, the longitudinal components decouple, as is to be expected from the

fact that these correspond to reparametrization of the strings stretched between the D-particles.
We shall ignore them altogether. The remaining part of the action (upto order α2 and β2) can
be written as

S � � dt

 2πα �

�
1
2

g � 1
c ẏ2 � 1

2
ẇ2 � 1

2
1

� 2πα � � 2 y2w2 � � (5.2)
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where we have introduced
�

y � 2
�

ξ: the distance between the D-particles and
�

w � 2g � 1�
2

c � �

α � � �

β � � :
a ‘vector’1) containing the degrees of freedom of the string stretched between them.

There are obviously many solutions to the equations of motion derived from (5.2) with the
particles escaping to infinity as time goes to infinity: for example

�

y � t � � �

y0
� �

v0t with
�

w � t � � 0
satisfies the equations of motion for any

�

y0 and
�

v0. However, there are far more solutions with
�

w not always zero. If at t � 0 the particles are close together and
�

w is small but non-zero, no
matter how big their relative velocity, the particles will not be able to escape to infinity. An
example of such a trajectory in � y1

� w1 � -space is shown in figure 5.2. For the present purpose

Figure 5.2: An example trajectory in the potential of figure 5.1, with initial values x � 0, y � 0,
ẋ � 1 � 1, ẏ � 0 � 7.

though, the most important point is that there exist solutions with particles escaping to infinity.
Before moving on to a quantum mechanical description, let us note that the above analysis
straightforwardly generalizes to the SU � N � case: the matrices

�

Y will contain more diagonal
elements corresponding to relative positions and more off-diagonal elements corresponding
to stretched strings, but the basic picture remains the same: there are solutions with particles
coming in from, and escaping to, infinity. Again, most of these have the off-diagonal elements
zero for all time, and constant ‘velocities’ for the diagonal elements.

5.1.2 Quantum mechanical analysis

Quantum mechanically the picture changes dramatically: although it remains true that there are
axes in the Y m

ab hyperplane where the potential is zero, this no longer means that particles can
actually escape to infinity. This can be understood as follows: when the particles are not too

1)in the limited sense of an ordered set of numbers; not in the sense of Lorentz covariance.
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near one another, the potential roughly takes the form of

V � 1
2 ∑ � r � 2φ2 �

where
�

r represents the spatial separation between two D-particles, and φ represents the trans-
verse directions in the Y m

ab hyperplane, ie the strings connecting the particles. The φ-dependent
part of the Hamiltonian is then roughly

H � φ � � 1
2 ∑ � pφ � 2 � 1

2 ∑ � r � 2φ2 �
Treating

�

r as a c-number for the moment1), we see that this Hamiltonian has the form of a set
of harmonic oscillators, each with frequency ω � � �r � . The ground state of such a system has
energy E � N � 1

2 ω � 1
2 N � r � , with N the number of degrees of freedom in φ (2D � 2 in the

case of two particles.) The one loop effective potential for the diagonal degrees of freedom
�

r
thus is Veff � 1

2 N � r � . The conclusion must be that quantum corrections forbid the particles to
be far away from one another: there will only be bound states.

5.2 Super D-branes do escape

In the supersymmetric case, the picture changes again: a fermionic term is added to the
Hamiltonian which might cancel the bosonic term, so there may be solutions of the Schrödinger
equation that describe scattering particles. On a very intuitive level, this conjecture is substan-
tiated by the fact that the supersymmetrized version of the harmonic oscillator has zero ground
state energy, so the argument which showed that there are no scattering states in the bosonic
case, does not hold in the supersymmetric case.

We can be much more precise. De Wit etal [30] have shown that the spectrum of the Hamilto-
nian for (4.26) is continuous all the way down to E � 0. This proves that scattering is possible2) ,
but it also raises a new problem: are there any bound states at all? In other words, does the
Hamiltonian have a discrete spectrum with E � 0 eigenstates in addition to the continous spec-
trum? This question is not just an academic one: duality between type IIA string theory and
11D supergravity requires that there be particles in the IIA theory that correspond to the grav-
itons in the 11D theory. Since the duality maps momentum in the eleventh direction to charge
on the IIA side, such particles should exist with any (integer3)) charge. The only possible can-
didate seems to be the bound state of a number of D-particles (since fundamental strings do not
carry the required charge at all), so it is very important to prove that such a state can be stable.

Only recently, this proof has been found [31], but the details are rather technical.

In the following section we shall present a discussion about a special case of D-particle scatter-
ing as discussed in [32], and then comment briefly on the existence of bound states. D-particle
scattering is also discussed in [33], in which Bachas investigates D-brane scattering at distances
slightly larger than the ones we consider here, though still shorter than the string scale.

1)This is a reasonable thing to do, because for large r and small φ, the potential is flat in the r direction, and small
quantum corrections in this direction would not change the picture drastically.

2)and, as Feynman said, when something is not actually forbidden in quantum mechanics, it will happen.
3)The duality is described by compactifying the 11th direction. In a compact direction, the momentum is quant-

ized, and therefore so is the required charge in the IIA theory.
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5.3 Super D-particle scattering: a semi-classical approximation

In this section we shall consider scattering of two D-particles off one another. We shall do
so in a semi-classical approximation only, since a full quantum-mechanical description would
be rather technical. Such a description may however be found in [32]. We shall find that the
passage of two free D-particles at ultra-close distance is likely to create a number of open
strings stretching between the particles. These will pull the particles back together after some
time, at which point a different set of stretching strings may be produced. We shall find that it
may take a relatively long time before a collision occurs that does not produce any strings, thus
allowing the particles to escape. This resonant behaviour is evidence for the existence of bound
states.

5.3.1 General relations

We begin with the action found in � 4.6, which we repeat for convenience:

S � � dx0

 2πα �
Tr � 1

gc

�
� Ẏ m � 2 � 1

2
1

� 2πα � � 2

�
Y m � Y n � 2 � � iψψ̇ � ψγm �

Y m � ψ � � � (5.3)

It should be noted that this formula has been written down in temporal gauge, A0
a � 0. This

is a good starting point for quantization, but one should not forget that physical states must
be gauge invariant. This constraint is implemented by demanding that they are annihilated by
Gauss’s law:

Ga � 1
gc

εabcY
m

b Ẏ m
c � i

2
εabcψbψc �

(Ga � 0 is the Euler-Lagrange equation for A0
a.) Requiring that the Ga’s annihilate physical

state constrains the combinations of strings that can be formed between the particles, as we
shall see below.

To avoid notational cluttering, we shall set 2πα � � 1 in the following. Noting that Y and ψ
have dimensions length and (length)1

�
2 respectively, while α � has dimension (length)2 , it is not

difficult to re-insert the left-out factors. Furthermore, we shall in the following put space labels
m and spinor labels α upstairs, while putting gauge group labels a downstairs. In this way, no
confusion should arise when these labels are replaced by explicit numbers.

As the canonical momentum conjugates to Y and ψ are

Pm
a �

δL
δẎ m

a
� 1

gc
Ẏ m

a

and

Πα
a �

δL
δψ̇α

a
� iψα

a
�

we find that the Hamiltonian corresponding to (5.3) is

H � gc

2
� Pm

a � 2 � 1
2

Y m
a Km

a
� 1

4gc
� εabcY

m
b Y n

c � 2 � (5.4)

where we have introduced
Km

a � iεabcψbγmψc �
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(We used the fact that the structure constants for SU � 2 � are fabc � εabc, the fully anti-symmetric
tensor density with ε123 � � 1.)

Noting that the canonical commutation relations read

�
Y m

a
� Pn

b
� � iδmnδab and � ψα

a
� ψβ

b
� � δαβδab

�
it is not difficult to show that

Qα �  gc γmψα
a Em

a � 1
2
� 1

�
gc εabc

�
γmnψa

� αAm
b An

c

are the (sixteen) supersymmetry generators that yield H , although it should be noted that they
do so only upto a term proportional to G, the Gauss’s constraint. That is, H � 1

2 � Qα � Qα � only
for states that satisfy Gauss’s law.

The system described by (5.4) is quite tractable outside the region where Y is small: see
[29] for an in-depth discussion. However, since we are planning to do a scattering experiment,
we cannot avoid the problematic region. Treating this region fully quantum mechanically is a
difficult task, so we will use an approximation. Even this approximation is not quite trivial in
ten dimensions, so we shall first consider a toy model: (5.4) restricted to 2+1 dimensions, the
supersymmetric analogue of the system studied in � 5.1.1.

5.3.2 Scattering in 1+2 dimensions

We shall investigate the scattering of two particles described by (5.4) limited to 2+1 dimensions
in some detail. To begin with, let us note that in this restriction the Y m

a ’s become two component
vectors, m � 1 � 2, while the ψα

a ’s become two component spinors, α � 1 � 2. The � 2 � 2 � Dirac
matrices acting on these spinors may be taken to be γ1 � σ3 and γ2 � σ1. These obviously
satisfy � γm � γn � � 2δmn.

The setup for the scattering experiment is as follows: we assume that for large negative time
the particles are far away from each other, and are approaching each other with velocity v and
impact parameter b. Explicitly, we prepare the system in such a way that� Y 1

3 � � vt� Y 2
3 � � b � (5.5)

where Y m
3 is identified with the spatial separation between the D-particles. According to [30]

such states exist for general numbers of particles1) .
We shall investigate the evolution of this state in a Born-Oppenheimer approximation, that

is, we shall try to split the Hamiltonian in a term Hfast; � slow � and a term Hslow. The first term –
which describes the evolution of a set of fast modes – depends only parametrically on the slow
modes. By this we mean that the slow modes may be taken as a classical background for the
fast modes. The dynamics of the slow modes is ruled by the effective potential resulting from
integrating the fast modes out. In the following, we shall expand the Hamiltonian in terms of
the different bosonic and fermionic fields, before showing which of these are slow and which
are fast.

1)We shall be more explicit when we have uncovered the Hamiltonian.
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1. Analysis of the Hamiltonian
The bosonic part of (5.4) may be written explicitly as as

HB � gc

2

�
P2

3
� � P2

1
� P2

2 � � � 1
2gc

�
Y 2

3 Y 2
1 � � Y3

� Y1 � 2 � Y 2
3 Y 2

2 � � Y3
� Y2 � 2 � Y 2

1 Y 2
2 � � Y1

� Y2 � 2 � �
We shall ignore the terms that are quartic in Y1 or Y2, which we assume to be small compared
to terms that contain only two factors of Y1 or Y2. Obviously, for small �

�

Y3 � this assumption
loses its validity, but – as we shall see in a moment – with the system prepared as in (5.5), the
momentum terms completely dominate over the potential terms when �

�

Y3 � is small.
The remaining potential terms can be rewritten as

V � 1
2

x2w2 �
with

�

x �
�

Y3, and w a two component object defined by w1 � 2 � g � 1�
2

c

�

Y1 � 2
� ı̂ � , where ı̂ � is a unit

vector perpendicular to
�

x. (For definiteness, let’s say that ı̂ � � x̂ and ı̂ � form a right-handed
coordinate system.)

The full bosonic part of the Hamiltonian may now be written as

HB � gc

2
p2

x
� 1

2
p2

w
� 1

2
p2

u
� 1

2
x2w2 �

where we have introduced the two component object u defined by u1 � 2 � g � 1�
2

c

�

Y1 � 2
� ı̂ � . At this

point, we can see that the bosonic part of the ground state wave function is

φB
t � �

x � �

w � � χ � x1 � vt � x2 � b � φ0 � �

w; � �x � � �
where χ � �

x � is any function that is smooth and non-zero in a small region around
�

x � 0 only,
while φ0 is the ground state function of a two dimensional harmonic oscillator,

φ0 � �

w; � �x � � � � �x � 1�
4e � 1

2

� �
x

� � w2
1 � w2

2 � �
When � �x � is large and � �

w � and � �

u � are small, the fermionic term reduces to

HF ��� 1
2 �

�

x �K
�

3
�

with
K

�

3 � iε3abψaγ
�

ψb �
For fixed

�

x, K
�

3 depends on two out of the three fermions only. To make this clear, change
conventions such that γ̃ � � σ3 and γ̃ � � σ1. We may then write

K
�

3 � i
� � ψ̃1

1ψ̃1
2 � ψ̃2

1ψ̃2
2 � � � ψ̃1

2ψ̃1
1 � ψ̃2

2ψ̃2
1 � � �

Introducing fermion creation and annihilation operators

a1 �
�

1
�
2 � ψ̃1

1 � iψ̃1
2 � � a2 �

�
1

�
2 � ψ̃2

1
� iψ̃2

2 � �
a†

1 �
�

1
�
2 � ψ̃1

1
� iψ̃1

2 � � a†
2 �

�
1

�
2 � ψ̃2

1 � iψ̃2
2 � �
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the fermionic term in the Hamiltonian is found to be

HF � � �x �
�

∑
i � 1 � 2

a†
i ai � 1 � � � �x � � NF � 1 � �

The fermionic ground state wave function thus is the (four component) spinor ξF
t that is an-

nihilated by both a1 and a2
1). Summing up, the full (four component) wave function for the

ground state at large � �x � is ψt � �

x � �

w � � ψB
t � �

x � �

w � ξF
t .

To see that this state actually has energy zero, note the bosonic ground state energy is 2 �
1
2 ω � � �x � . This is exactly cancelled by the fermionic ground state energy, which is � � �x � . No
potential term is associated with u, so we find that it is indeed possible for � �x � to become large
while keeping the energy zero.

2. Gauss’s law
At this point it is appropriate to recall the Gauss constraint that we mentioned above: without
it, there would be four possible fermion states: both oscillators could independently be in either
of their two states. With it, only two of these four states survive: the fermionic part of G3 reads

GF
3 ��� i

2

�
ψα

1 ψα
2 � ψα

2 ψα
1

� ��� a†
1a1
� a†

2a2 �
Obviously, the bosonic and fermionic parts of the Gauss constraint do not need to annihilate
physical states independently. However, if GB annihilates a particular state, then so must GF .
In particular, if GB is zero, then the fermions must either both be in their ground states, or both
in their excited states. Below we shall find that this implies that only pairs of strings can be
created between the scattering particles: states with an odd number of stretched strings do not
obey Gauss’s law2).

3. The approach of the particles
Having investigated the Hamiltonian in some detail, we are now in a position to investigate
the actual scattering. Starting with � x1 � � vt and � x2 � � b for large negative t, we see that a
Born-Oppenheimer approximation can be used: w varies on a much shorter timescale than x
does: Tw

� ω � 1 � 1
� � �x � , while Tx

� � �x � � � ˙�x � � � �x � � v. Since there is no potential term associated
with u, it decouples from the other operators, at least to first order, and may be ignored in the
following analysis. Summing up, w and the fermions in K

�
are fast modes, while x, u and the

other fermions are slow. This justifies why we have quantized w and its fermionic superpartners,
while considering x as a c-number and ignoring u altogether.

The energy of the excited states is proportional to � �x � . As the particles approach each other
from infinity, w and the fermions must initially be in their ground states. The bosonic wave-
function then takes the shape of an incoming Gaussian wave-packet (in � x � w � -space), which
has a width of ∆w � � � w2 � � � �x � � 1�

2 in each of the
�

w-directions. We shall assume that the

1)Since a1 and a2 depend parametrically on x (through γ � ), the ground state is not fully time independent, but it
changes slowly.

2)In the 2+1 dimensional case, either no, or two strings can be created; in the ten dimensional case which we
shall consider below, upto eight pairs may be produced.
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Born-Oppenheimer approximation remains valid right upto the point where Tx and Tw become
equal. This happens when � �x � �  v, that is, when x1 �  v � b2. In accordance with [32], the
area � �x ���  v � R shall be called the stadium.

4. The passage through the stadium
On entering the stadium, the width of the wave-packet is ∆w � v � 1�

4 , so the potential is roughly

V � 1
2

x2 � ∆w � 2 �  v �
We shall assume that v is large enough1) to allow us to neglect V against the kinetic energy
T � 1

2gc
v2. The wave-packet will then propagate freely as long as � �x � � R, which will remain

the case for a timespan ∆t � 2 � v � b2

v . During that time it will spread in the
�

w-directions by
diffusion.

Expanding the bosonic wave-function at the time when the stadium is entered,

u0 � w � � e � 1
2

� �
x

�
w2

in terms of the eigenfunctions ψk � eikw of the free Hamiltonian H0 � � 1
2 ∇2

w, we find that after
∆t, the w-dependent part of the wave-function has evolved into

u1 � w � ��� dk � dw � e � ikw
�

u0 � w � � e � 1
2 k2∆teikw � e � 1

2
1

∆t � 1 ��� �x � w2 �
which has a width

∆w1 �
�
� w2 � 1 � � ∆t � 1

� � �x ���  3∆w0
�

since ∆t � 2 � 1
�
v. This means that the assumption that the potential can be neglected does not

cause internal inconstency. (If ignoring the potential would have caused the wave-function to
spread significantly, ignoring V would be proven inconsistent, since for large ∆w the potential
eventually becomes larger than the kinetic energy.)

Since the bosonic part of the Hamiltonian is symmetric under reflection of x1, the ground
state for w will be the same on both sides of the stadium, so the outgoing bosonic wave-
function will almost completely map down to the new ground state. For the fermionic part,
things are very different: sending x1 � � x1 mixes the fermionic ground state with the fer-
mionic excited states. During the time spent in the stadium, the fermionic part of the wave
function cannot change significantly, since the distance between the energy levels sets a times-
cale Tfermion � ∆E � 1 � � 1

�
v, which is larger than the time spent in the stadium, when b is

not too small. When the particles leave the stadium, the wave-function will be projected out
into the eigenstates of Hfast again. We shall compute the expectation value for the fermionic
oscillation number after leaving the stadium in terms of v, b. This expectation value is given by� N � after �

F
��� � GS � before � �� N

� after �
F ��

GS � before � � � (5.6)

since upon leaving the stadium, the fermion will still be mostly in its original state, which is
the ground state for

�

x � ��� x0
� b � .

1)Compared to � 2gc � 2� 3 , so for weak coupling this is not a strong constraint.
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Perhaps the easiest way to compute (5.6) is the following: just before entering the stadium,
the fermionic Hamiltonian is given by

H � before �
F � fast ��� 1

2 �
�

x �K
�

3
� (5.7)

while immediately afterwards it is given by

H � after �
F� fast ��� 1

2

�

x � � �

K3 � (5.8)

In order to compute (5.6) we must express this in terms of the original fermionic cre-
ation and annihilation operators. The first step is to note that

�

x � is
�

x rotated over an angle

φ � π � atan
�

b� v � , (see figure 5.3), and in particular that � �x � � � � �x � . We may thus write

H � after �
F � fast ��� 1

2 �
�

x � ε3bcψb

�
cos φγ

� � sinφγ
� � ψc

� � �x � cos φ � ∑i

a†
i ai � 1 � � � �x � sin φ

�
a1a2

� a†
2a†

1 � �
Since ai ��

GS � before � � � 0 and � GS � before � �� a
†
i � 0, we find that

� N � after �
F

� ��� cos φ � 1 � 2 � 2
b2

v
�

Upon leaving the stadium, we should refor-

1/2
R = v

x

x

1

2

The stadium

φb

v

Figure 5.3: The passage through the stadium.
The wavy line signifies the fact that a classical
description of the motion is inappropriate in-
side the stadium.

mulate Gauss’s law in terms of the fermionic
operators ãi and ã†

i which connect the new
ground state and excited states, and which can

be used to write H � after �
F� fast as � �x �

�
∑i ã

†
i ãi � 1 � .

This rewriting does not change the functional
form of GF

3 , and – noting that the bosons are
still in their ground state which is annihilated
by GB

3 – we find that the outgoing state either
should have both of the fermions in the ground
states, or both in the excited states.

As b is made smaller, NF increases, and
for hard scattering1) we find that the outgoing
state is almost entirely projected onto the new
excited state. In plain English: as two free D-
particles fly past one another at very short dis-
tance, two strings will nearly always be pro-
duced between them. These strings will be in
one of their fermionic ground states.

1)It is doubtful, however, whether this regime may be successfully probed, since for small b � v
1� 2 the characteristic

time for the fermion evolution is not long compared to the time spent in the stadium.



70 SCATTERING AND BOUND STATES

5. After the collision
As the particles move apart again, the string stretched between them exerts a centripedal force
on them, due to the effective potential V � 2 � x � 1). Therefore, the string must either decay
quickly, or the particles will come together once more. The following gives some evidence
indicating that the string does not decay quickly: consider a situation with two D-particles with
two strings stretching between them. These strings may recombine as sketched in the sequence
below, and then disappear altogether.

� � � � �

The probability of the strings meeting one another at some point along their length is propor-
tional to that length. Furthermore, the total probability of such an event occurring is propor-
tional to the available time. Finally, the recombination event can also be viewed as a closed
string splitting, which assigns a factor g2

c to the probability (a factor gc to the amplitude). All
in all, the probability that the strings annihilate before the D-branes come together again is

P � g2
c

� (typical length) � (time between collisions) �
Very roughly, the ‘typical length’ is equal to the maximum separation, rmax, while the time is
given by τ � rmax

�
v. Conservation of energy yields rmax � 1

4gc
v2, so τ � 1

4gc
v and P � v3. This

indicates that for small velocities the strings will most probably survive until the branes collide
again. Obviously, it is a very rough estimate, but actually computing the pre-factor is highly
non-trivial.

For small gc the maximum separation can be quite large, but eventually the particles are
pulled together again. When they pass each other for the second time, the fermionic states may
be exchanged once more2), and the particles will be free to escape, almost in their original
direction. The angular deviation is given by θ � f � gc � � b

�
v3. It is non-trivial to determine the

function f � gc � analytically, but for gc
� 10 � 3, the following approximately holds:

θ � 5 � 3 � gc � 0 � 87 �
�

b
�
v3 �

This completes our analysis of the toy model.

5.3.3 Scattering in ten dimensions

In the full ten dimensional theory, there are far more transversal directions: whereas in the
simple case we had only one, now we have eight. Also, the number of fermions is increased
from 3 � 2 to 3 � 16. However, this does not change the qualitative discussion of the previous
section: there still are slow and fast components of the bosonic and fermionic oscillators when
the particles are wide apart, and although the stadium changes from a disk to a 9-ball, the time

1)The bosons and the fermions each contribute a term ω � � x � 	
2)the amplitude for the fermions remaining in their excited state is much smaller, but non-zero. If they remain in

that state, they will perform another swing.
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spent inside it (as a function of the velocity and impact parameter) does not change. On the
other hand, the most likely value for b changes from 1

2  v to � 1
2 �

1�
8  v. Hard scattering (small b)

becomes less likely. Should such an event occur, the force between the particles will be stronger,
since there are 16 fermionic string states that may be excited instead of only two. The time
between collisions will decrease accordingly. One important new aspect of the system, is that
upon re-colliding, there are far more possibilities: in the low-dimensional case, the fermions
could either return to the ground-state, allowing the particles to escape, or they could stay in
the excited state, causing the particles to perform another swing. In the ten dimensional case,
there are many possible combinations of fermion excitations, and it is much more likely that
some new set of strings is stretched between the particles as they come out of the stadium for
the second time. The total average number of collisions is thus increased tremendously, and it
may be a long time before the particles escape to infinity again. When they finally do escape,
their angular deviation may be large.

We may venture to estimate the average time the D-particles spend in each other’s vicinity,
but one should keep in mind that by now we have made so many approximations, that the res-
ult is a very rough estimate at best. Not letting this bother us, we may investigate the numbers:
any state that is likely to be produced in the primary collision, also has a large likelyhood to
be annihilated in the second collision. Therefore, the chance that the particles separate almost
immediately is fairly large. However, if the system survives the first few swings, the estimated
lifetime increases considerably: there are 16 fermions which are always excited in pairs, so
there are 216 �

2 � 32768 states. Only one of these allows the particles to escape, so the ex-
pectation value for the number of collisions is roughly 32768. The lifetime of the resonance
could therefore be estimated at τ � 32768 � g � 1

c v, if we were to ignore the possibility of string
evaporation. However, even for fairly small v evaporation is an important factor: with evapor-
ation taken into account, τ becomes τ � 32768 � g � 1

c v � 1
1 � � 32v � 2 . This peaks at v � 1

�
40 with

τ � 500g � 1
c , which is still much longer than the inverse mass of the two particles together.

5.3.4 The existence of bound states

The scattering experiment described above does not of course prove that there are bound states.
However, it does presents some evidence. When two particles in a scattering experiment can
remain close to one another for a long time, the usual interpretation is that the particles tem-
porarily combine and form a bound state. The qualitative treatment of D-particle scattering
as presented above, certainly suggests that such particles can, with proper initial conditions,
remain in each other’s vicinity for a very long time. During this time they would perform thou-
sands of swings as described in � 5.3.2, thus gaining a considerable angular deviation. This is
a strong hint at the presence of slowly decaying bound states. Whether these states are the
marginally stable bound states required by the duality cannot be determined at this level of
approximation.





CONCLUSIONS AND OUTLOOK

What is past
is prologue.

— A. Pais

We have found that particles exist in string theory, and that they are governed by the action of
a free point particle with mass g � 1

c α � � 1
�
2, that is,

SD � particle ��� 1

gc  α �
� dt � 1 � v2 �

A system of N of these D-particles can – in low-energy approximation – be described by the
dimensional reduction to D � 0 � 1 of ten dimensional supersymmetric Yang-Mills theory:

SN D � particles � � dt
1
gc

Tr

�
Ẏ 2

m
� 1

2
1

� 2πα � � 2

�
Ym
� Yn

� 2 � � Tr

�
iψψ̇ � 1

2πα �
ψγm

�
Ym
� ψ � � �

This action describes the dynamics of N D-particles that interact through open strings that may
be stretched between them: the diagonal components of the Ym correspond to the positions of
the particles, while the off-diagonal components represent the presence of stretched strings.

We have considered a scattering experiment of two D-particles as described by the above
action, and found that supersymmetry is absolutely essential: without it, the possibility of
stretched strings means that the one loop effective action for the particle coordinates contains a
potential term that grows linearly with the distance between the particles. Bosonic D-particles
are therefore confined, and scattering is impossible. Supersymmetry saves the day by cancelling
the problematic effective potential: supersymmetric D-particles can escape to infinity without
requiring any energy. Our analysis of the scattering showed that the particles may form reson-
ances with a lifetime long compared to their inverse mass: evidence for the existence of bound
states of N D-particles.

Outlook: M-theory from D-particles

If marginally bound states of N D-particles actually do exist (which a recent proof [31] has
shown to be true), they have a mass of m � N � � N

gc � α
� . The mass shell relation for such a state

reads
p2

0 � m2� N � � p2
m � (5.9)
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As we saw in chapter two for strings, one may try to understand a mass term with m of the form
m � n

R as the remnant of a momentum term in a compactified direction. In the present context,
we may view gc  α � � R11 as the radius of a compactified eleventh direction. From the eleven
dimensional point of view, (5.9) is interpreted as

p2
0 � p2

11
� p2

m : (5.10)

the mass shell relation for a massless particle in eleven dimensions.
This shows that a bound state of N D-particles in ten dimensions can also be viewed as a

massless particle in a theory on an eleven dimensional space with compact eleventh dimension.
This particle has momentum in the eleventh direction given by

p11 � N
R11
�

(For finite R11, the momentum p11 is quantized in units of 1
�
R11, as is the mass of the bound

state of D-particles. Upon decompactification, ie sending R11 to infinity1), the momentum can
take on continuous values, but to obtain finite momentum, N must of course grow linearly with
R11.)

If we consider the fact that the ground state multiplet of the D-particle must represent the
supersymmetry algebra of type IIA string theory, which is ten dimensional N � 2 supersym-
metry, we are led to a most beautiful connection: it is well-known that 10D N � 2 supersym-
metry can be viewed as the dimensional reduction of 11D N � 1 supersymmetry, and that there
is only one eleven dimensional supersymmetric point particle theory, which is eleven dimen-
sional supergravity. Therefore, the marginally bound states of D-particles in ten dimensions
must correspond to the supergravity multiplet in eleven dimensions.

Thus, the existence of bound states of D-particles, and the fact that D-particle scattering
and graviton scattering yield the same amplitudes, are key ingredients for a successful attempt
at formulating M-theory. Over the last year, a large number of articles have appeared on this
subject. We mention [12] and [34], but there are many more, and the subject is developing
rapidly.

1)which corresponds to taking the strong coupling limit of the ten dimensional theory.



APPENDIX A

CONVENTIONS AND NOTATION

Although most of the notational conventions are introduced in the main text, it seemed appro-
priate to include the following as a quick reference.

A.1 Units and metric

Right from the beginning we have set

� � c � 1 �
We have opted not to fix the string length scale. Many authors set α � � 1

2 , but some set α � � 1
or α � � 1

�
2π. To avoid such confusion, α � is explicitly included in all formulas in this thesis,

except in chapter 5, where 2πα � � 1 to avoid excessive notational cluttering. The only other
concession we have made, is that we have used the string length scale (ls) and string tension
(T ), where this made equations more readable. Therefore we note that these are related by

T � 1
2πα �

� 1
πl2

s
�

The major part of the text uses Minkowski metric on space-time:

ηµν � diag ��� 1 �	� 1 � � � � �	� 1 � �
and on the world-sheet:

ηαβ � diag ��� 1 �	� 1 � �
In chapter 3 we change to Euclidean time to ease calculations. This is done by replacing τ with
τ̄ � iτ.

A.2 Indices

The text uses indices to label many different things: world-sheet and space-time coordin-
ates, spinor components, gauge group generators and spaces orthogonal and longitudinal to
D-branes. In general we have used the following conventions:

� Space-time labels are µ, ν, etc.

� World-sheet labels are α, β, etc.
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� Spinor components are labelled A, B, etc.

� Gauge group labels are a, b, etc.

� m, n, etc are used to enumerate spatial coordinates.

� i, j, etc enumerate particles and strings.

� In chapter 4 copies of S1 are indexed by I, J, etc.

No difference is implied between upstairs or downstairs placement of indices, except for
space-time and world-sheet labels, which are raised and lowered by ηµν and ηαβ and their
inverses.

Sommation over these indices is always implied unless the text specifically states otherwise.

A.3 Other conventions

Although it may be obvious, note that time runs from left to right in all Feynman diagrams,
and that i and i are very different: the former is  � 1, while the latter is an integer dummy.
Similarly, e � exp � 1 � , while e is an einbein.
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