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Abstract 
A minimally invasive “continuous nicotine monitor” (CNM) would resolve the dynamic nicotine concentration, [nicotine]t, faced by high-sensitivity 
nicotinic acetylcholine receptors (nAChRs) during and after nicotine intake by individual subjects. Motivations: “Know the potential enemy at an 
individual level.” Smoking or vaping produces an initial “bolus” of nicotine in the blood and brain, lasting ~5 minutes with a peak concentration 
of ~100–200 nM. The bolus largely governs reinforcement, reward, and cognitive enhancement. A prolonged declining phase of [nicotine], with 
a half-time of 1–4 hours, largely suppresses withdrawal symptoms and governs the known cell biology of addiction. Next, “Know the poten-
tial therapy,” because individual [nicotine]t records will be useful during research on the effectiveness of nicotine replacement therapy. Finally, 
“Know the physiology.” The only three known effects on nAChRs in cerebrospinal fluid at the relevant [nicotine]t are activation, desensitization, 
and chaperoning/upregulation. Therefore, additional mechanistic insights will arise from correlating [nicotine]t with readily measurable physiolog-
ical data on those effects in molecular, cellular, and brain slice systems and animal models. Interstitial fluid is the appropriate compartment for 
a CNM. The molecular sensor technology could employ fluorescence, as shown by progress on measuring [nicotine]t with improved variants of 
intensity-based nicotine-sensing fluorescent reporters (iNicSnFRs). Electrochemical measurements of [nicotine]t may also be possible. Studies 
like the Population Assessment of Tobacco Health would contextualize [nicotine]t measurements during each subject’s ad libitum nicotine intake, 
hopefully at a cost <$100 for a 24-hour record.

Implications
We propose the first research agenda leading to a wearable continuous nicotine monitor (CNM). We explain that this interdisciplinary 
agenda must be publicly funded and not-for-profit. The CNM would measure the time-varying concentration, [nicotine]t, experienced by 
nicotinic receptors. We define the challenging specifications for a CNM, and we show how present techniques can nearly meet these 
challenges. With the appropriate CNM, individual [nicotine]t can be measured in populations of 10,000 or more subjects, addressing many 
present and future hypotheses about individual nicotine pharmacokinetics and receptor physiology for all modes of human nicotine intake, 
including emerging nicotine replacement therapies.

Introduction
Ever since Columbus’s crew sampled tobacco in 1492, nico-
tine research has led the way in new concepts and techniques 
for neuroscience. With that history in mind, we intend this 
article to inform two communities. The nicotine and tobacco 
research community may wish to learn about the prospects 
for new generations of wearable, minimally invasive or non-
invasive devices to measure the pharmacokinetics of nicotine 
at an individual level.

The wearable device community may wish to learn about 
the specific opportunities and challenges associated with  

nicotine. The opportunities are great: at any given time, some 
60% of the world’s >1 billion smokers would like to quit. The 
challenge: nicotine is present at concentrations ~ 1 million 
times smaller than glucose, the target for the most successful 
continuous, minimally invasive monitor, yet the required time 
resolution resembles that for glucose!

We wish to measure nicotine concentration [nicotine] 
versus time, t, near the relevant receptors, or [nicotine]t. Since 
tobacco produces primarily the S-enantiomer and only the 
charged species binds to nicotinic acetylcholine receptors 
(nAChRs), one would more precisely write [(S)-nicotine+]t.
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Three Motivations for the Proposed 
Continuous Nicotine Monitor
1.“Know the Potential Enemy”: Personal 
Pharmacokinetics
It is already known that cigarettes and electronic nicotine 
delivery systems (ENDS) produce two phases of [nicotine]t. 
The first phase occurs while nicotine is entering the blood. 
It is the relatively high, initial peak or “bolus” of [nicotine] 
(100–200 nM for 5–10 minutes, Figure 1, area highlighted 
mins 0–10). This phase appears to provide reinforcement via 
a sense of well-being, stress relief, or cognitive boost. The 
bolus results from the efficiency of smoking/vaping: (1) the 
large area (50–75 m2) of the lungs and (2) the high mem-
brane permeability of the nicotine free base. During a puff, 
nicotine crosses the apical and basolateral membranes of al-
veolar endothelial cells, reaching arterial blood within a few 
seconds, then the brain a few seconds later.3–6 When nicotine 
is no longer present in the alveoli, [nicotine]t begins to decline.

Oral nicotine products (ONPs) include nicotine pouches, 
lozenges, gums, and inhalers and involve permeation through 
the buccal tissues rather than the alveoli. Transdermal patches 
eponymously use transfer through the skin.

The prolonged, declining phase of [nicotine]t (Figure 1, area 
highlighted mins 10–60) occurs with a half-time of 1–4 hours 
after a single cigarette. The prolonged phase both suppresses 
withdrawal symptoms and maintains the cellular biological 
aspects of addiction.7 For a given individual, the prolonged 
declining phase probably differs less than the bolus among 
methods of intake, because the flux of nicotine into the blood 
and cerebrospinal fluid (CSF) has nearly stopped. An excep-
tion is the transdermal patch; after removal, there may be a 
plateau of 1–2 hours before the decline begins.

Within a given study (15–30 subjects), [nicotine]t measured 
with a single method of nicotine intake shows great varia-
bility among subjects; a typical coefficient of variation (CV) 
is at least 0.5.8 When nicotine is administered intravenously 
in controlled doses (mg/kg), the CV is usually much smaller.8 
The variability in [nicotine]t among users is a strong reason to 
study individual [nicotine]t records. Experiments will require 
orders of magnitude more subjects than is possible with ex-
isting pharmacokinetic methods to address open problems in 
addiction and therapy:

1.	 Pioneering studies suggest that menthol prolongs the 
lifetime of [nicotine] in mice9 and humans,10 increases 
conditioned place preference to nicotine in mice,11 and 
potentiates upregulation of nAChRs in mice and humans 
(see “Know the Physiology,” below).12 Menthol might 
exert these effects via (1) its inhibition of cytochrome 
P450 2A6 (CYP2A6),13 (2) its inhibition of TrpA1 
channels in respiratory pathways,14 or (3) its action as 
a chemical chaperone for nAChRs.11 Mechanism (1), 
but neither (2) nor (3), would increase and prolong 
[nicotine]t.

2.	 On average, women experience more difficulty in smoking 
cessation than men.15–17 Experiments with deuterium-
labeled nicotine show that the prolonged declining phase 
is faster in women.18 Men seem to value the reinforcing 
effects of the bolus more than women15; Does this arise 
from sex differences in the bolus? How extensive are the 
individual variations? Does estrogen accelerate nicotine 
metabolism solely by inducing CYP2A618?

3.	 Do the varied effects of nicotine across the lifespan19 cor-
relate with changes in nicotine pharmacokinetics, for in-
stance slowed pharmacokinetics in elderly people20,21?

Figure 1. Collected data on time course of plasma [nicotine]t, using the intravenous (IV) blood-draw method. Measurements on cigarette smoking 
cover a wide range, mostly falling between the two examples given (Cigarette11 and Cigarette22). Juul, Cigarette1, first-generation (pre-2015) vape1; 
IQOS, Cigarette22; Nasal spray, Gum, Inhaler, Patch118; Zyn.119 Time zero is the first puff, insertion of the pouch, or attachment of the patch. Measures of 
variability have been omitted for clarity. All studies comprised at least 24 subjects at least 19 y of age. In one study,2 the subjects had an average age of 
34 y and were 52.5% male. Study118 is a review that compiled several other studies. Two studies1,119 did not report on average age or % male.
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4.	 Do smokers titrate the bolus to achieve 100–150 nM nic-
otine, but no more?

5.	 How does the bolus change with reduced-nicotine 
cigarettes22–24 or adjustable e-cigarettes25?

6.	 How do individual vapers control [nicotine]t during the 
day? Do some “seek the peak” and others “avoid the 
trough?”

2.“Know the Potential Therapy”: Personal Nicotine 
Replacement Therapy
Nicotine replacement therapy (NRT) will play a role in 
smoking cessation for the foreseeable future. Various national 
regulatory agencies (for instance, the US Food and Drug 
Administration [FDA]) have approved nicotine for smoking 
cessation via NRT in the form of transdermal patches, 
inhalers, and gum.

This approval does not yet extend to ENDS, which now re-
ceive authorization for marketing from the FDA’s Center for 
Tobacco Products (CTP) as “reduced risk products” (RRPs) 
under the Tobacco Control Act of 2009. Like many pre-
vious authors, we acknowledge the potential abuse liability 
of RRPs, including the possibility that RRPs could cause 
increases in dual use (vaping and smoking).26

However, the FDA’s Center for Drug Evaluation and 
Research (CDER) has now cleared at least one “investigative 
new drug” (IND) application of an ENDS for investigation as 
a prescription-only device leading to smoking cessation. In an 
early iteration of the rationale for such devices, previous CTP 
and FDA leaders stated,27 “We are examining possible steps 
the agency could take to address the pharmacokinetic perfor-
mance of FDA-approved medicinal nicotine products to help 
more smokers quit. Factors for consideration may include the 
speed with which nicotine is delivered... [from] products ca-
pable of delivering nicotine without having to set tobacco on 
fire.” In a promising technology, piezoelectrically driven ultra-
sonic mesh inhalers produce controllable droplet size, require 
no carrier molecules such as propylene glycol and vegetable 
glycerin, and do not heat the liquid at all.28,29 This could rep-
resent a step forward in individually controllable NRT.30–32 
The mesh nebulizer that received the IND clearance showed 
[nicotine]t kinetics approaching that of a cigarette and much 
faster than a conventional inhaler.33

Several metrics have been proposed as guidelines for effec-
tive NRT. One suggestion is to measure flux from the device 
to the subject34; this can be measured in the device itself or 
by collecting nicotine with an impactor. A continuous nico-
tine monitor (CNM) measuring [nicotine]t near the relevant 
nAChRs would be much more useful by capturing the best 
time resolution. It has been suggested35 that the most suc-
cessful means of smoking cessation involves the greatest rate 
of rise of [nicotine]t, 

d[nicotinet]
dt ,presumably duplicating the 

“bolus.” An aspirational CNM must resolve the bolus, on an 
individual basis.

Newer techniques for delivering NRT also raise the specter 
of abuse liability in two ways. First, it must be noted that 
many individuals fail to quit smoking with buccal or trans-
dermal NRT because they miss the bolus from a cigarette. 
If a prescription-only device, such as an ultrasonic nebulizer, 
perfectly copies the bolus of a user’s favorite cigarette, after a 
prescribed time course of NRT, a smoker might simply switch 
to a nicotine salt ENDS, which does optimize the bolus. We 
acknowledge that vaping manufacturers could use a CNM to 
enhance the bolus and, therefore, increase abuse liability.

Second, nicotine may well remain in the CSF for the pro-
longed declining phase, desensitizing nAChRs and provoking 
the cell biology of nicotine addiction. Newer ONPs also have 
abuse liability.

Despite these concerns about the abuse liability of NRT, 
one cannot deduce either the bolus or the prolonged declining 
phase during therapeutic NRT from first principles; we must 
perform dynamic, quantitative, individual measurements of 
[nicotine]t. Individual measurements of [nicotine]t are a highly 
appropriate component of research to test hypotheses that 
various forms of NRT benefit distinct subgroups of people 
defined by “tobacco abuse.”36

3.“Know the Physiology”: Activation, 
Desensitization, and Chaperoning/Upregulation of 
Receptors
The CNM concept interfaces directly with nearly a century of 
research on time-resolved nAChR responses. Nicotine acts on 
nAChRs in only three ways, according to present knowledge. 
Nicotine activates nAChRs, producing ion flux (including 
Ca2+ flux) and depolarization. After a few minutes at the 
relevant nAChRs, nicotine desensitizes nAChRs. Slowest of 
all—hours to days—nicotine upregulates nAChRs via one or 
more post-translational processes, primarily chaperoning of 
nascent nAChRs within the endoplasmic reticulum (ER). The 
first two processes have received intense study since the iden-
tification of nAChRs, including experiments on isolated cells, 
brain slices, in vivo recordings on animal models, imaging of 
nAChR availability, functional magnetic resonance imaging, 
and heterologous expression, mostly via electrophysiological 
and Ca2+ recording.

Chaperoning/upregulation are both more complex and 
less well studied.7,37–41 How is the prolonged phase crucial 
for nicotine dependence? Nicotine enters the ER, beginning a 
pathway that we term “inside-out.”7 This entry occurs within a 
few seconds after nicotine appears near cells, and at a concen-
tration within 2-fold of the extracellular value.42 Importantly, 
even [nicotine] as low as 10 nM activates the “inside-out” 
pathway,40 and in some people, [nicotine] continues to ex-
ceed 10 nM for ~6 hours after smoking/vaping.42–46 A major 
effect of the inside-out pathway is to produce upregulation of 
plasma membrane nAChRs, and this upregulation is selective 
at every level studied—brain region, cell type, axonal versus 
somatic versus dendritic localization, and subunit stoichiom-
etry of the upregulation nAChRs.7

Important simplifications are now in hand: It is generally 
agreed that the relevant nAChRs are α4β2*, α6β2*, and pos-
sibly α2β2* (the * denotes the possible presence of an ad-
ditional subunit, such as α5, in the assembled pentameric 
receptor). Also, the relevant peak [nicotine]t values are those 
achieved by smoking, <200 nM, in part because higher [nico-
tine] activates other nAChRs in aversive pathways. In another 
major simplification, measurements in CSF are unnecessary: 
nicotine reaches the CSF within seconds from brain capillaries 
because of its high logDpH7.4.

47

Some aspects of nicotine pharmacokinetics are shaped 
by the effects of inhaled nicotine in the mouth, airways, 
and the alveolar epithelium; the nicotine concentrations in 
these compartments are much higher than considered above, 
and they take place at additional targets. (1) Deprotonated 
(free base) nicotine activates TrpA1, a channel abundantly 
expressed in airways.14,48 This irritation could induce 
“braking” of respiration.49 (2) Aerosolized nicotine in the 
alveoli equilibrates with the cytosol of alveolar epithelial 
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cells, and this could lead to cytosolic concentrations of hun-
dreds of millimolar (mM; Henry’s law). In alveolar epithelial 
cells, these concentrations may be high enough to chaperone 
and upregulate additional nAChRs, such as α3β4*.50,51 These 
complications are additional reasons to measure [nicotine]t in 
CSF-like compartments, downstream from measurements on 
nicotine flux from devices.

The CNM Concept Is Directly Relevant to 
Social and Behavioral Studies of Nicotine 
Intake
Because nicotine consumption—certainly for the abusive 
aspects, and probably also for the smoking cessation aspects—
involves many cues, social support, and other activities such 
as eating and drinking, flavorings, and diurnal rhythms, it is 
crucial that measurements of [nicotine]t occur during ad lib-
itum consumption in daily life. The CNM we envision would 
satisfy this requirement.

The Population Assessment of Tobacco Health (PATH) 
study has resulted in 737 research papers as of mid-2024. The 
PATH study’s biomarker and biospecimen components have 
varied. PATH-like studies would be enhanced by 24-hour 
CNM records of [nicotine]t, and we argue below that such 
records would be more useful than the currently employed 
urinary nicotine equivalents. Distributing and supporting the 
CNM could become as straightforward as the activities asso-
ciated with continuous glucose monitors (CGMs; see below). 
If a study also collects tissue, blood, or saliva, the DNA 
analyses could further define additional components of nico-
tine metabolism, including CYP2B652 and CYP2E1.53

Present Measurements of [nicotine]t

The classical ideas introduced so far have motivated 
measurements of [nicotine]t on hundreds of subjects gathered 
in several recent reviews.8,35,54 Two methods now provide 
“gold standard” measurements of nicotine pharmacoki-
netics. The intravenous blood-draw method is performed in a 
clinic on a subject with an intravenous catheter.1,2,55–57 It costs 
thousands of dollars per subject, including tens of dollars for 
each sample in a typical series of 10–25 samples repeated at 
5-minute intervals. The positron emission tomography (PET) 
method, which mixes 11C-nicotine with inhaled smoking or 
vaping, has a better temporal resolution (a few seconds).58,59 
For both methods, a study typically includes 15–30 subjects. 
Both methods are too tedious and expensive for routine per-
sonal use. Neither can be routinely applied to youths.

Slower methods have been especially useful in showing that 
the prolonged, declining phase varies up to 10-fold among 
individuals, partially due to polymorphisms in cytochrome 
P450 2A6 (CYP2A6). CYP2A6 partially governs the conver-
sion of nicotine to (nearly inactive) cotinine.60 The “nicotine 
metabolite ratio” (NMR) measures CYP2A6 activity. NMR 
reveals that ~15% of the population are “slow” metabolizers: 
individuals with defective CYP2A6 have up to a severalfold 
longer [nicotine] half-life, and the increase depends on the 
genotype.60 Slow metabolizers smoke fewer cigarettes per 
day; but especially for moderate to heaving smokers, they 
score just as strongly “dependent” on Fagerstrom-like tests.61

NMR does not measure the key data stream, [nicotine]t. 
Furthermore, genetic risk scores capture only 34.5% of the 
variability in NMR.62,63 Proxy measures for [nicotine]t in 
blood include urinary nicotine metabolites. The only presently 

available physiological proxy for [nicotine]t, increased heart 
rate,45 is complicated for ad libitum intake because heart rate 
is influenced by several activities of daily living: exercise, si-
multaneous consumption of caffeinated beverages and nico-
tine, and tolerance to subsequent cigarettes.64–66 Some ENDS 
measure puff strength, duration, and frequency (“smoking 
topography”).67

Thus, [nicotine]t is the relevant metric and
 conventional intravenous (IV) and PET methods have too 

few subjects to resolve most confounding factors. In con-
trast, we envision a CNM that costs <100 USD (2024) to 
scalably study tens of thousands of subjects, transforming 
“confounding factors” for either therapy or abuse into “iden-
tifiable risk factors” or “personal smoking cessation therapy.”

Relationship to Conventional Pharmacological 
Concepts
Unbound Concentrations
All the techniques we envision will monitor the unbound con-
centration of nicotine+. This is the form sensed by the binding 
site of nAChRs, the active site of enzymes such as CYP2A6, 
and the binding site of biosensor proteins described below. 
However, the TrpA1 channel probably binds the deprotonated 
(free base) form.14

Volume of Distribution
The unbound concentration of any drug should be distin-
guished from the total amount of the drug in the organism.68 
This concept is usually associated with apparent volume of 
distribution. Volume of distribution in humans is convention-
ally inferred from measurements of the so-called clearance.68 
Most drugs have an apparent volume of distribution >1 L/kg, 
thought to arise either via drug binding to proteins, accumu-
lation within lipids, or accumulation within acidic organelles 
(“acid trapping”). Nicotine has a relatively low volume of 
distribution, 1.8–4.2 L/kg,69 with a consensus value of 2.6 L/
kg.70 That is, nicotine becomes bound or otherwise seques-
tered to the extent that the total amount of nicotine in the 
body would be appropriate to the volume of water equal to 
~2.6 times the body’s weight (“corporal water volume”).

Most of these possibilities and mechanisms can influence 
[nicotine]t. Therefore, some of these mechanisms would 
shape the data stream produced by a CNM—but none would 
challenge the validity of the [nicotine]t data as they apply to 
actions on nAChRs.

Area Under the Curve of Concentration × Time
Area under the curve (AUC) is often invoked to compare 
actions of therapeutic drugs. For nicotine, abuse potential 
is sometimes assumed to increase with AUC,54,71,72 but this 
idea has little experimental proof. More generally, the goal 
to “know the physiology” will transcend the AUC metric by 
showing how the bolus and the prolonged phase affect activa-
tion, desensitization, or chaperoning of nAChRs.

Interstitial Fluid Is the Most Relevant 
Compartment
CSF bathes highly nicotine-sensitive nAChRs in several dis-
tinct brain regions; therefore, [nicotine]t in CSF governs activa-
tion, desensitization, and upregulation of nAChRs. However, 
no minimally invasive or noninvasive, nonradioactive  
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technique is available for measuring [nicotine]t in CSF. For 
all means of nicotine intake, the blood–brain barrier, formed 
by tight junctions in cerebral capillaries and by the end-feet 
of astrocytes, provides a delay of at most a few seconds in 
achieving a CSF [nicotine]t that essentially equals blood 
[nicotine]t.

8,47

As in most organs, brain cells lie within 50 µm of 
capillaries. Nicotine can diffuse passively over 50 µm 
within 5 seconds (assuming a diffusion constant of 0.5 µm2/
ms). Smokers and vapers feel a “buzz” within ~20 seconds, 
showing that nicotine has appeared in the CSF and reached 
nAChRs. Rat measurements confirm that [nicotine]t in CSF 
is close to that in plasma.73 Special intra-arterial [11C]nico-
tine PET measurements in humans achieve a resolution of 
~5 seconds,4,6,58 which is unnecessary for most studies of 
[nicotine]t.

Interstitial fluid (ISF) is minimally invasive. Nicotine is 
predicted to be slightly more permeable to capillaries in pe-
ripheral tissue than to brain capillaries; but the difference is 
likely to be just a few seconds. In this context, time-resolved 
measurements of [nicotine]t in ISF are presumably more rele-
vant than blood to [nicotine]t in CSF.

Commercial tobacco manufacturers modify the taste 
and and/or pH of cigars and cigarettes; and this may also 
modify [nicotine]t.

74,75 In nicotine salt ENDS, the pH of the 
e-liquid and of the aerosol is lower than cigarettes; but the 
higher solubility of nicotine+ than of free base nicotine allows 
increased [nicotine+] in the e-liquid and in the inhaled aer-
osol. Manufacturers of nicotine salt ENDS may also choose 
an anion that affects airway flow.6,76 All NRT strategies also 
manipulate nicotine pharmacokinetics.8,35

On the one hand, the various effects on nicotine entry into 
the blood cannot yet be predicted simply either from the 
amount of e-liquid left in the reservoir, from the volume of 
each puff, or from the nicotine deposited on an impactor after 
a controlled number of mechanical puffs. On the other hand, 
once the nicotine enters the blood, its concentration (<1 μM) 
is so low that buffers in the blood maintain its pH at ~7.4. If a 
nicotine salt is ingested, the blood similarly dilutes the anion, 
which therefore need not be considered further. As noted 
above, the nicotine passes within seconds from the blood 
to the CSF and other compartments such as ISF. Therefore, 
[nicotine]t in the blood or ISF is an excellent measurement 
of the delivery system’s total pharmacologically relevant, dy-
namic result—whether the delivery system is a combustible 
cigarette, an ENDS, an ONP, or NRT.

In summary, we strongly favor interstitial fluid as the com-
partment of choice for measurements of personal [nicotine]t.

Analogy to CGMs
All FDA-approved CGMs reside in ISF, are inserted with min-
imally invasive techniques, transmit their data, [glucose]t, 
wirelessly, and have a temporal resolution of ~5 minutes. One 
FDA-approved glucose monitor uses fluorescent detection,77,78 
although via a different molecular mechanism than the one 
described below.

Most CGMs now in use employ electrochemical detection 
via glucose oxidase positioned at the intradermal tip of a 
5-mm-long gold wire. The latest electrochemical CGMs last 
≥10 days. CGMs have become commodity items, available 
over the counter ($50) for use by prediabetic patients and by 
nondiabetic consumers to satisfy their curiosity about their 
[glucose]t. Several labs are now attempting to develop CGMs 

in essentially noninvasive form: arrays of microneedles a few 
hundred micrometers long and tens of micrometers wide, 
with their tips in ISF.

Sweat
Although sweat measurements have the great advantage of 
being noninvasive, other aspects lead to uncertainties that 
sweat can provide quantitative, time-resolved measurements 
relevant to CSF. Sweat is secreted through a complex duct at 
varying pressures. According to a biofluidic model of sweat 
glands, a biomolecule secreted by the gland reaches the skin 
surface within <5 minutes, fulfilling the temporal resolu-
tion criterion of a CNM.79 Active microfluidics may then be 
required in the sensor device to transport the sweat to the 
sensing surface or chamber. This would introduce a delay; but 
if the flow is laminar, the time of actual secretion can be de-
termined.80 Primary sweat (in the sweat coil) is quite acidic,79 
leading to concerns about acid trapping, which may explain 
initial measurements that [nicotine] in sweat is >10 times 
higher than in blood.81 It is not understood whether the walls 
of the sweat duct would then allow reabsorption of nicotine. 
Researchers in the sweat sensor field are working to eliminate 
these complications, with the goal of realistic measurements 
on a known time scale.82–85

Specifications for a CNM
Concentration Resolution: ~10 nM
Although the EC50 for nicotine activation of nAChRs is 
typically several hundred nanomolar (nM), much lower 
concentrations desensitize or upregulate nAChRs.7 For in-
stance, the EC50 for upregulation is 37 nM.40 We therefore 
consider it necessary to measure [nicotine]t as it declines to 
values as low as ~10 nM.

Absolute [Nicotine] Calibration
The signal from all copies of the CNM should have an in-
variant, simple relationship to [nicotine]t. In Figure 2, we 
show that a candidate fluorescent sensor molecule displays 
a linear response in the relevant range of [nicotine], and we 
refer to the sensitivity as δ-slope. We would accept an abso-
lute accuracy of ±20%. Modern electrochemical CGMs do 
have absolute calibrations, in part because a few CGMs from 
each production batch are tested at varying [glucose]; the 
resulting calibrations are then embedded in all CGMs from 
the batch.87

Temporal Resolution: 5 Minutes
The CNM must have the temporal resolution to measure the 
bolus of [nicotine]t (~100 nM for ~5 minutes, Figure 1, area 
highlighted mins 0–10). This implies a temporal resolution 
of ~300 seconds: the typical 10-puff period for a single cig-
arette or a typical ENDS “vaping session.” Juul and IQOS 
achieve 60–150 nM nicotine during this 300- to 600-second 
time frame (Figure 1).

Selectivity: At Least 100-Fold for Nicotine
The ideal CNM would have zero response to other molecules 
in the ISF. We aim to render the sensing molecules 100-fold 
more sensitive to nicotine than to all other ligands. According 
to this specification, even if an endogenous interfering mole-
cule has a 100-fold higher concentration higher than nicotine, 
this would not markedly distort the [nicotine]t signal.
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Figure 2. Molecular basis of the iNicSnFR approach to a CNM. A, Schematic view of the single-chain fluorescent sensing molecule such as iNicSnFR12. 
B, A single frame from Supplementary Video S1, depicting the details of the conformational change that underlies sensing of nicotine by iNicSnFR12. 
C, Concentration–response curve at [nicotine] in the range 0–180 nM, the expected plasma, CSF, or ISF range during nicotine intake via smoking, 
vaping, transdermal patches, inhalers, or oral nicotine products.8 Measurements were conducted in 96-well microtiter plates, and each well contained 
100 nM purified iNicSnFR12 in 100 μL of solution. F0 and ∆F are the resting fluorescence and additional nicotine-induced fluorescence, respectively. 
The excitation and emissions wavelengths are 496 and 535 nm, respectively. From Haloi et al.86 CSF = cerebrospinal fluid; CNM = continuous nicotine 
monitor; iNicSnFR = intensity-based nicotine-sensing fluorescent reporter; ISF = interstitial fluid.
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Durability: At Least 24 Hours
A suitable first-generation CNM would measure [nicotine]t 
for roughly 24 hours. This would allow 40 or more cigarettes 
or vaping sessions, providing an excellent view of the pro-
longed phase. Including a full 24 hours has the additional ad-
vantage that [nicotine]t is expected to fall to nearly zero during 
the night, providing an important set of control readings.

Measurements of [nicotine]t during research on smoking 
cessation would require much longer records. By analogy 
with CGMs, a 10-day period seems approachable. Mice with 
brain expression of cpGFP-based biosensors provide signals 
for as long as 1 year.88 Mice expressing an adeno-associated 
virus encoding iFentanylSnFR, which differs by only a dozen 
amino acids from intensity-based nicotine-sensing fluorescent 
reports (iNicSnFRs), continue to give useful responses to fen-
tanyl for at least 3 weeks.89

Available Molecular Technology for a CNM
Nicotine-Binding Protein-Based Approaches: The 
iNicSnFR Family
The iNicSnFR family42,86,90 is based on ~50 years of research 
on periplasmic binding proteins (PBPs), comprising some 
20 000 genes in bacterial and archaeal species. The PBP binds 
a small molecule (ligand) of importance to the microorganism 
(in an intact bacterium, the PBP would then present the ligand 
to other proteins). More than 450 atomic-scale structures for 
PBPs now exist in the protein data bank RCSB. In all known 
cases, the PBP responds to the ligand binding by undergoing 
a conserved “Venus flytrap” or “clamshell” conformational 
change.91 Most known PBPs exist as monomers, and the 
conformational change depends on the ligand conformation 
with a Hill coefficient near 1. This well-understood change 
requires <1 second in most cases, rendering the PBP suitable 
to become the molecular basis of a real-time, continuous, re-
versible, reagent-less sensor (Figure 2).

The PBP of most interest for a CNM is a mutated variant 
of OpuBC from a hyperthermophilic bacterial species which 
uses choline or betaine as an osmolyte. We mutated OpuBC 
to favor binding of acetylcholine92 or nicotine.42 Each member 
of the iNicSnFR family is a single protein chain. The chain 
represents a nearly modular merger of two moieties: the PBP 
binding moiety and a fluorescent readout moiety. We use the 
term “merged” to avoid implying that these two moieties 
are simply concatenated, C-terminal of the first connected 
to N-terminal of the second. The GFP moiety is circularly 
permuted (cpGFP), as in GCaMP sensors for Ca2+. The circu-
larly permuted cpGFP is then inserted into the PBP sequence, 
near the hinge region. Recently, the iNicSnFR project was 
aided by adding computational predictions93–95 to the directed 
evolution pipeline. iNicSnFR12 achieves nearly the desired 
sensitivity in 96-well saline-based lab tests (Figure 2C).86 The 
concentration–response relation is linear in the range shown, 
because the EC50 for the entire relation is >1 μM.86

The iNicSnFR approach exploits the amplification 
produced by modulating the fluorescence on the basis of nic-
otine binding to the PBP moiety. During each second that the 
single nicotine molecule is bound to the PBP, the fluorophore 
absorbs as many as 108 blue photons, then emits ~0.7 times 
as many green photons.86 The optical elements resemble those 
of a modern fluorescence microscope, simplified further by 
measuring with a single photodetector (“fiber photometry”). 

Figure 3 presents a schematic for our planned next-generation 
CNM.

We presented preliminary data for an approach in which 
the purified iNicSnFR molecules are trapped within a hy-
drogel, at the tip of a fiber optic.96 The hydrogel would be 
surrounded by ISF. The hydrogel approach (1) prevents other 
proteins from interacting with sensor molecules, distorting F0 
or ∆F, (2) avoids increasing F0 by endogenous cellular fluo-
rescence, and (3) minimizes contact with immune cells. The 
purified protein-hydrogel approach differs from most cpGFP 
sensors, which are expressed in animal models via viral 
vectors or transgenes. Points (1) and (2) also allow us to plan 
ways for absolute calibrations of δ-slope (see Figure 2C).

The Redox-Modified PBP Method
This method (Figure 4A) was suggested as early as 2001,97 then 
lay fallow until 2021. A recent report confirmed the concept, 
for continuously sensing glutamine with the eponymously 
named glutamine binding protein.98

Site-selective modification would attach the redox probe 
to the nicotine-binding PBP at a sequence position that 
experiences an acceptably large movement (10–20 Å) upon 
ligand binding (see Figures 2B and 4A). We have defined sev-
eral candidate residues, based on liganded and unliganded 
structures of iNicSnFR12. The original previous study, with 
other ligand–PBP pairs, coupled redox-active groups to 
introduced cysteine residues97,98; and we have begun with 
this tactic. Our preliminary experiments have utilized Cys 
variants of iNicSnFR12 and also the PBP alone, without the 
cpGFP moiety (“PBP12”).

For the redox probe, one can choose among more than a 
dozen molecules.99 We have begun experiments with meth-
ylene blue. Phenazine derivatives98 and ruthenium (Ru(II))97 
have also been used with PBPs. In the most general tactic, 
one would site-selectively introduce noncanonical azido 
amino acids. Our preliminary studies have produced signals 
that show dose dependence on nicotine. However, we are still 
experimenting with conditions that yield satisfactory con-
trol data and also yield reversibility suitable for continuous 
sensing.

The electrodes for the intradermal version of the electro-
chemical CNM would be subcutaneous gold wires (0.5 mm 
diameter, 5 mm length) resembling those in CGMs—though 
with the more sophisticated analog processing required by 
pulsed techniques such as square-wave voltammetry. In an-
other variation, the PBP could be coupled to a graphene mon-
olayer that acts as the gate of a field-effect transistor.100

The PBP-Gated Nanopore Approach
A single nicotine binding event could, in principle, be amplified 
electrically if the binding gates a channel or a nanopore that 
passes 108 ions/s (a typical single-channel current) while 
the nicotine is bound (Figure 4B).101,102 In a pioneering re-
port, Salmonella typhi nanopores were embedded in planar 
bilayers. Conventional electrophysiological amplifiers and 
software were used in single-channel mode to analyze the 
nanopore current. Each of 13 different metabolite-binding 
PBPs proved suitable for ligand detection.103 These were 
expressed in bacterial systems, purified, and added to the 
chambers separated by the membrane. The PBPs produced a 
range of fluctuations in the nanopore current, typically on 
a time scale of seconds. Adding the cognate ligand for the 
PBP then produced additional current fluctuations. Usually 
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the liganded (“closed”) conformation of the PBP blocked the 
current more completely, suggesting that “as the structure of 
the protein becomes more compacted, the protein penetrates 
deeper inside the nanopore, resulting in more current being 
blocked.” Importantly, the EC50 of the ligand-induced current 

fluctuations was similar in all cases to the ligand–PBP inter-
action in solution.

Thus, the PBP-gated nanopore approach is biophysically 
tractable and pharmacologically understandable. Although 
no PBP was studied in the class F family which contains 

Figure 3. Design for a miniaturized fiber photometric CNM, based on initial progress with iNicSnFR12 entrapped in a hydrogel.96 A, The iNicSnFR-
containing hydrogel is placed in ISF, at the end of a fiber optic inserted by a spring apparatus like those in some CGMs.120 The miniature fiber 
photometer is 14 mm tall, including the protruding fiber optic. There are two time-multiplexed excitation LEDs. Excitation at 470 and 405 nm yield 
nicotine-dependent and nicotine-insensitive fluorescence, respectively,42,121 a common tactic to control for movement artifacts and bleaching. The 
SolidWorks file is available from the authors. B, Simulations of radial diffusion in a cylindrical hydrogel.122,123 A hydrogel 400 μm in diameter contains 20 
μM iNicSnFR. We assume that nicotine has a diffusion constant, D, of 0.3 μm2/ms in the hydrogel containing no iNicSnFR (~2/3 of the free-solution D). 
Effective D is further reduced by rebinding to iNicSnFR molecules with a Kd of 10 μM. Following a jump from [nicotine] = 0 to C0 at time 0 in the external 
solution, [nicotine]t within the gel approaches 90% of C0 within 300 s, satisfying the criterion for temporal resolution. C, In the design, the hydrogel 
contains 6.28 pmol of iNicSnFR, 20 μM. This is close to the 10 pmol of our standard assay condition in which a 100 μL microtiter well contains 100 nM 
iNicSnFR12 (see Figure 2). CGM = continuous glucose monitor; CNM = continuous nicotine monitor; iNicSnFR = intensity-based nicotine-sensing 
fluorescent reporter; ISF = interstitial fluid.
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OpuBC (the molecule that was evolved to yield PBP12),91 
these data are encouraging.

A deployable CNM need not be constrained by fragile lipid 
bilayers and single-channel measurements. The membrane 
would be a synthetic polymer, as used in pore sequencing; 
and many PBP12–nanopore complexes would be embedded 
in parallel, providing a macroscopic signal proportional 
to [nicotine]t. This would utilize presently available high-
throughput planar electrophysiological methods, for assaying 
candidate variants in a protein engineering campaign that 
develops and optimizes the PBP–nanopore complex. The 
supported membrane and electrodes would then be fixed to 
the tip of CGM-like probe.

Nicotine-Binding Aptamer-Based Approaches
In the present context, an aptamer (a synthetic single-
stranded oligonucleotide) would be attached to an electrode. 
The aptamer would be evolved or selected to bind a nicotine 
molecule, changing shape. This would change the distance 
between an attached redox-active group and the electrode, 

resulting in a signal analogous to the redox-modified PBP.104 
Electrochemical aptamer-based sensors have been developed 
for metabolites, therapeutic drugs, and abused drugs; but 
unfortunately, there is not yet a reported aptamer with se-
lective affinity for nicotine. Furthermore, we expect a poorer 
dynamic range and lifetime from aptamers compared to fluo-
rescent hydrogels.105

Nicotine-Oxidizing Enzymes
In part because amperometric glucose sensors have found 
widespread use, investigators have considered oxidoreductase 
enzymes that already use nicotine as a substrate. The major 
challenge arises because we have specified that [nicotine]t 
must be measured at 106-fold lower levels than [glucose]t, and 
each nicotine molecule that becomes oxidized by the enzyme 
contributes only a single elementary charge to the current.

Nicotine oxidase from Pseudomonas putida NicA2, was 
studied with amperometry.106 Selectivity for nicotine is ex-
cellent. A mutated version became the basis for an issued 
patent,107 aimed primarily at measurements in sweat. The 

Figure 4. Electrochemical approaches to a CNM. A, PBP bearing a redox group. The exemplar group is methylene blue. B, Conceptual view of a PBP 
in a nanopore. The apo-PBP from iNiCSnFR3a (excised from pdb file 7S7W) was manually positioned within the vestibule of hemolysin E from E. Coli 
K12 (pdb 2WCD), using ChimeraX. The complex was conceptually positioned in a bilayer membrane. CNM = continuous nicotine monitor; iNicSnFR = 
intensity-based nicotine-sensing fluorescent reporter; PBP = periplasmic binding protein.
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Figure 5. Synchronized averaging will reduce noise in CNM recordings. A, A simulated noisy CNM data stream. The dose table for the simulator72 
contained observed ad libitum times for one smoker124 (21 cigarettes, total; we assumed 1 mg doses). We added white noise, single-pole filtered at 
τ = 5 min (the target temporal resolution) with an RMS deviation of 29 nM (roughly the present resolution of iNicSnFR12). The resulting [nicotine]t signal 
is poorly discernible. B, Using the dose table, we retrospectively synchronized and averaged the traces during 10 min before and 60 min following the 
beginning of each cigarette. As expected, this decreased the noise by a factor 

√
21. The resulting denoised average trace approximates the peak and 

waveform of the noiseless simulated [nicotine]t for a single cigarette. CNM = continuous nicotine monitor; iNicSnFR = intensity-based nicotine-sensing 
fluorescent reporter; RMS = root mean square.

Figure 6. A cartoon summary of this review’s stated motivation for a measurements of individual [nicotine]t, our present opinions on the most likely 

path to achieve a wearable CNM, and our suggestions for further analysis of [nicotine]t. The lungs, especially the bronchioles and alveoli, are the most 
frequent route for nicotine to reach the bloodstream. Because ISF [nicotine]t strongly resembles blood and cerebrospinal fluid (CSF) [nicotine]t (see 
text), a minimally invasive intradermal CNM provides appropriate measurements of [nicotine]t. Entrapping a purified protein of the iNicSnFR family in 
a hydrogel has promise as a molecular sensing strategy with the stated specifications. During ad libitum smoking or vaping, a photometric CNM can 
also incorporate compensation and normalization algorithms (not shown in detail) to result in the [nicotine]t signal. The wearable CNM communicates 
[nicotine]t via Bluetooth to a portable device. The [nicotine]t trace shown is simulated from the smoking times observed for ad libitum smoking by 
one exemplar subject over the time course of one day.124,125 In the future, further time series analysis of many actual individual [nicotine]t records can 
enlighten research on nicotine and tobacco. Created partially in https://BioRender.com. CNM = continuous nicotine monitor; iNicSnFR = intensity-based 
nicotine-sensing fluorescent reporter.
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limit of detection was 1 µM, yielding a current of 0.01 µA for 
an electrode area that was probably 3 mm2. An intradermal 
electrode would presumably have a 100-fold smaller area. 
This would give a signal to 10 nM nicotine of just 1 pA, a 
challenge to measure. Studies on Shinella sp. HZN7 NctB, 
another nicotine-oxidizing enzyme, show that mutations can 
increase turnover number only ~2-fold from the wild-type en-
zyme.108

The study of Tai et al.81 claimed to measure the current 
associated with CYP2B6 oxidation of nicotine.109 There was 
no control for the additional oxidative currents; it is likely 
that the enzyme simply increased previously measured fara-
daic currents109 by ~2-fold, leaving the sensitivity at ~100-fold 
less than our goals.

Data Analysis
Pioneering instruments generally produce suboptimal data. 
It may not be possible for a CNM to detect when a subject 
takes a puff or otherwise ingests nicotine. We plan to equip 
the initial iNicSnFR12-based CNMs with three pushbuttons. 
Buttons 1, 2, and 3 “time-stamp” the signal at the beginning of 
a cigarette, a vaping session, or a nicotine pouch, respectively. 
In simulations, vast reductions in noise can result (Figure 5).

It would be desirable to automatically detect smoking/
vaping episodes, so that subjects can ingest ad libitum without 
the added burden of time-stamping the dataset.110 Machine 
leaning algorithms are being developed to identify meal 
times and predict individual patients’ glucose trajectory from 
present CGM measurements.110,111 How much of this effort 
is useful for the 24-hour measurements we envision for the 
CNM? We suggest that ~500 subject-days could provide an 
initial time-stamped dataset analogous to the glucose sensor 
time series in the OhioT1DM dataset, which contain 56 days 
× 8 type 1 diabetic patients.112 This dataset could then provide 
a benchmark for developing new smoothing and curve-fitting 
algorithms.

The Caltech authors include a group with expertise in 
developing wearable devices. Like several other groups, we 
have reported on-device analog and digital signal processing, 
Bluetooth-based wireless communication, and battery power. 
These seem suitable for a CNM.113,114

A Not-for-Profit, Collaborative Research 
Agenda: Summary, Economics, and Support
Figure 6 summarizes this review in a cartoon form. Developing 
a CNM is a research agenda; and the outcome will be prima-
rily a wearable instrument for research on the neuroscience of 
human nicotine use.

The example we have given, PATH-like research programs, 
might call for 30 000 CNMs/year. At these quantities, in the de-
sign of Figure 3, each thin-film wafer would be cut to yield 75 
optical components (excitation filter, dichroic mirror, or emis-
sion filter). The total cost of these three components would be 
~$18 per CNM. The electronics, including a Bluetooth chip 
with sufficient processing power to normalize and correct 
the signal, would cost ~$22 per CNM. Other components, 
including purified iNicSnFR protein, plastic fiber optic, lens, 
3D-printed body, and battery, would have a total cost of ~$20. 
Therefore, we envision a cost of <$100 per CNM. If each sub-
ject in a PATH-like study wears a CNM for 24 hours in associ-
ation with each annual interview, the additional cost will be $3 
M/year—a single-digit percentage of the PATH budget.

We advocate a research agenda analogous to the on-
going, highly collaborative, international development of 
two other neuroscience instruments: miniature fluorescent 
microscopes115 and high-density multielectrode probes.116 
Initial experiments can and must use rodent models; but un-
like the two examples given, the research agenda must prog-
ress to measurements in humans with all deliberate speed. 
The medical device industry is largely driven by clinician up-
take and insurance reimbursement; however, no reimburse-
ment path for a CNM exists today. Therefore, the tobacco 
control, smoking cessation, and regulatory communities 
must decide whether public sources or a nonprofit startup117 
provide the most appropriate route for supporting the devel-
opment of a CNM.

Supplementary Material
Supplementary material is available at Nicotine and Tobacco 
Research online.

References (101–125) are available as Supplementary 
Material.
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