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A compressed hierarchy for visual form 
processing in the tree shrew

Frank F. Lanfranchi1,2 ✉, Joseph Wekselblatt2, Daniel A. Wagenaar2,3 & Doris Y. Tsao1,4 ✉

Our knowledge of the brain processes that govern vision is largely derived from 
studying primates, whose hierarchically organized visual system1 inspired the 
architecture of deep neural networks2. This raises questions about the universality of 
such hierarchical structures. Here we examined the large-scale functional organization 
for vision in one of the closest living relatives to primates, the tree shrew. We performed 
Neuropixels recordings3,4 across many cortical and thalamic areas spanning the tree 
shrew ventral visual system while presenting a large battery of visual stimuli in awake 
tree shrews. We found that receptive field size, response latency and selectivity for 
naturalistic textures, compared with spectrally matched noise5, all increased moving 
anteriorly along the tree shrew visual pathway, consistent with a primate-like 
hierarchical organization6,7. However, tree shrew area V2 already harboured a high- 
level representation of complex objects. First, V2 encoded a complete representation 
of a high-level object space8. Second, V2 activity supported the most accurate object 
decoding and reconstruction among all tree shrew visual areas. In fact, object 
decoding accuracy from tree shrew V2 was comparable to that in macaque posterior 
IT and substantially higher than that in macaque V2. Finally, starting in V2, we found 
strongly face-selective cells resembling those reported in macaque inferotemporal 
cortex9. Overall, these findings show how core computational principles of visual 
form processing found in primates are conserved, yet hierarchically compressed,  
in a small but highly visual mammal.

The ability to recognize objects is fundamental to the survival of visual 
animals. The primate ventral stream has long served as a model for 
studying how objects are processed in the brain10,11. One defining feature 
of the primate ventral stream is hierarchical organization12, which is mir-
rored by deep neural networks (DNNs) trained on object recognition8,13.  
This parallel raises an important question: is hierarchical representation 
necessary and, if so, can it be found across all highly visual mammalian 
species? Investigating visual processing across different mammalian 
species promises to provide a deeper understanding of general prin-
ciples for object vision.

Over a decade ago, the mouse visual system began to attract strong 
interest, driven by the wealth of tools available for mouse neural cir-
cuit dissection14,15. However, the mouse’s low visual acuity and limited 
cortical territory dedicated to vision16 make it a non-ideal organism for 
studying hierarchical brain mechanisms underlying object recognition. 
The tree shrew has attracted growing interest as a model to study visual 
processing17 owing to its high visual acuity (more than ten times that of 
rodents)18, greatly expanded visual cortex19 and excellent ability to per-
form visually guided behavioural tasks compared with the mouse20,21. 
The tree shrew visual system includes at least nine distinct anatomi-
cal visual cortical areas19. The primary visual area (V1) shows a high 
degree of functional specialization, including an orderly arrangement of 
orientation-selective columns22,23. The tree shrew also has a prominent 

second visual area (V2), albeit with a large-scale topographic organiza-
tion that differs from that of primates24. Lesion studies suggest a rough 
correspondence between tree shrew extrastriate areas anterior to V2 
and primate IT cortex: ablations of large portions of the temporal lobe 
produce deficits in pattern discrimination and object vision similar to 
the effects of inferotemporal (IT) lesions in primates19,25,26. However, to 
our knowledge, there have been no electrophysiological studies of the 
functional properties of tree shrew extrastriate visual areas beyond V2.

Here we aim to identify the cortical organization and coding princi-
ples that underlie visual object representation across the entire tree 
shrew ventral stream. Using large-scale electrophysiological recordings 
with several Neuropixels probes, we surveyed five tree shrew ventral 
visual areas as well as the pulvinar. We confirmed hallmarks of hierar-
chical organization found in primates, including increased receptive 
field size and response latency27 as well as increased selectivity for 
naturalistic textures compared with spectrally matched noise5. We 
found that area V2 in the tree shrew performs key functions associated 
with primate IT cortex. This includes a full representation of high-level 
object space, accurate object identity decoding and reconstruction, 
and the presence of strongly face-selective cells. Overall, the results 
indicate a compressed, multi-stage hierarchy in the tree shrew in which 
representations previously observed in the primate are realized at a 
much earlier stage of visual processing.
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We targeted a set of areas spanning the tree shrew ventral stream to 
investigate hierarchical visual processing (Fig. 1a). We included primary 
(V1) and secondary (V2) visual areas as architectonically distinct regions 
involved in early stages of visual processing28,29. As a potential inter-
mediate node along the ventral visual processing stream, we selected 
the temporal posterior (TP) area. At the anterior end, we focused on 

three subregions that may be homologous to macaque IT cortex: 
temporal-inferior (TI), temporal intermediate (ITi) and inferotempo-
ral rostral (ITr) areas. Lesions to TI and ITi cause drastic impairments 
in visual form detection25. ITr receives inputs from both visual and 
auditory cortex19, but its visual functional properties have never been 
explored, to our knowledge. Owing to the difficulty in distinguishing 
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Fig. 1 | High-throughput electrophysiological recordings along the tree 
shrew ventral visual pathway reveal a functional hierarchy. a,b, Schematic 
of a tree shrew brain (a) and head-fixed electrophysiological recordings with 
Neuropixels probes (b). c, Representative electrode tracks marked with DiI 
(red) in each targeted area. Numbers indicate rostrocaudal position relative  
to Bregma (inset). A, anterior; L, lateral; M, medial; P, posterior. d, Number of 
recordings and total units across each area. e, Percentage of visually responsive 
cells to any of the presented visual stimuli in each area (Methods). Dots 
indicate individual recordings, bars indicate averages across recordings. 
Letters in this and subsequent panels indicate Tukey grouping. Tukey analysis 
(α = 0.05) after ANOVA, F5,18 = 5.362, P = 0.003). f, Percentage of visually 
responsive units (see Fig. 1e) showing receptive fields (RFs). Left (lighter, ON), 
centre (darker, OFF) and right (ON/OFF) bars for each area. Dots indicate 
individual recording sessions. g, Distribution of receptive field locations 

across the visual field. Top row, receptive field maps for example units, one per 
area. Middle and bottom rows show the position and sizes of all ON and OFF 
receptive fields (respectively) in a representative recording. Shading indicates 
receptive field quality (Methods). Each white box represents ±54° horizontally 
and ±38° vertically. Top left, one frame of sparse noise stimulus used to map 
receptive fields. h, Distribution of ON (left, lighter) and OFF (right, darker) 
receptive field sizes for each area. Tukey analysis (α = 0.05) after ANOVA, 
F4,1540 = 36.544, P < 10−28; TP was excluded from this analysis because of the very 
low number of cells with receptive fields in this area. i, Histogram of the latencies 
to half-peak response in visually responsive cells in each area. Tukey analysis 
(α = 0.05) after ANOVA F5,1147 = 20.197, P < 10−18. j, Comparison of the hierarchy 
inferred from receptive field size ( y axis) and response latency (x axis). Each  
dot represents the median of the data for a given area (hue), with ON and OFF 
receptive fields represented by light and dark dots, respectively. Scale bar, 15°.
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the border between TI and ITi, we grouped them together and refer to 
this region as TI-ITi. Because many temporal areas receive direct input 
from the thalamus30, we also included the dorsal visual portion of the 
pulvinar (Pulv) in our recordings. To guide electrode targeting, we 
performed retrograde tracing experiments (Extended Data Fig. 1a,b).

To characterize the visual responses of neurons across V1, V2, TP, 
TI-ITi, ITr and Pulv, we performed electrophysiological recordings 
using Neuropixels probes in awake tree shrews (Fig. 1b). During each 
experiment, animals were head-fixed in front of a monitor and pre-
sented with a battery of visual stimuli, including local sparse noise, 
static gratings, naturalistic textures and noise, and images of faces 
and other objects. At the conclusion of each session, probe locations 
were marked with DiI (DiIC18(3), a fluorescent dye) and targeting 
was confirmed with histology (Fig. 1c). We classified a cell as visually 
responsive if it responded to any of the classes of visual stimuli we 
tested (Methods). We found many well-isolated single units in each 
area (Fig. 1d), with some inter-area differences in the fractions of cells 
that responded to visual stimuli (ANOVA, F5,18 = 5.362, P = 0.003; Fig. 1e). 
In particular, significantly fewer TI-ITi cells were visually responsive 
compared with V2 cells.

We began by mapping the receptive fields of neurons along the tree 
shrew ventral pathway using a locally sparse noise stimulus (Methods). 
For each neuron, we estimated the receptive field by fitting a Gaussian 
distribution to the two-dimensional (2D) matrix of spike counts across 
visual field locations; ON and OFF receptive fields were computed 
separately using responses to white and black squares, respectively. 
Cells with ON and/or OFF receptive fields were clearly present in all areas 
except TP (Fig. 1f). This included the two most anterior areas TI-ITi and 
ITr; this contrasts with the anterior temporal lobe in primates, where 
neurons typically show spatially invariant responses31,32.

Within individual recordings, receptive field positions were clustered 
in a small portion of the visual field, corresponding to the retinotopic 
region represented by the cortical site targeted with the electrode. 
Figure 1g shows receptive fields of all recorded cells in a representa-
tive session for each area. This clustering was evident across all areas 
studied, including the most anterior areas, TI-ITi and ITr. This finding 
suggests that, despite their position at the anterior end of the ventral 
stream, these areas preserve retinotopic organization.

To assess the hierarchical relationships between the recorded areas, 
we first examined two classic metrics of hierarchical level: receptive 
field size and visually evoked response latency. Receptive field sizes 
increased systematically from posterior to anterior (Fig. 1h). We also 
calculated the half-peak latencies for each unit in each area and found 
that latencies increased from V1 to V2 to ITr (Fig. 1i and Methods). The 
hierarchy predicted by the increase in receptive field sizes was broadly 
consistent with the hierarchy predicted by the increase in latencies 
(Fig. 1j).

In the primate visual cortex, early visual areas are strongly tuned to 
low-level features such as orientation and spatial frequency, whereas 
later areas are tuned to more complex object features7,33–35. To examine 
whether a similar progression exists in the tree shrew, we assessed 
tuning to orientation and spatial frequency across ventral visual areas 
using static gratings (Fig. 2a). We found that the proportion of visually 
responsive neurons (see Fig. 1e) that responded to gratings was the 
highest in V1 and V2 (roughly 55% and 65%, respectively) and lowest in 
TI-ITi (Fig. 2b). Tuning to orientation, spatial frequency and phase of 
example cells from V2 and ITr illustrates the diverse tuning we observed 
to these variables across tree shrew visual areas (Fig. 2c). Overall, ori-
entation tuning was most prevalent in V1 and V2 (Tukey analysis after 
ANOVA, F5, 1,106 = 26.791, P < 10−24, Fig. 2d), whereas spatial frequency 
tuning was also prevalent in ITr (Tukey analysis ANOVA, F5, 1106 = 20.514, 
P < 10−18, Fig. 2e). These findings are roughly consistent with those found 
in the primate and rodent ventral stream, where orientation tuning is 
especially prominent in early visual areas and then sharply decreases 
in later areas36–39.

Thus far, V2 responses seemed largely similar to those in V1, raising 
the question whether V2 performs any distinct computational func-
tion. In macaques, sensitivity to higher-order statistical dependencies 
in naturalistic textures has been identified as a distinguishing feature 
of area V2 (ref. 5). We therefore asked whether tree shrew extrastriate 
areas show a similar specialization for naturalistic texture processing. 
To test this, we recorded neural activity across all six visual areas while 
presenting naturalistic textures and spectrally matched synthetic noise 
images (Fig. 2f and Methods). Among all areas, V2 contained the highest 
proportion of cells that responded to the texture and/or noise stimuli 
(Fig. 2g). Population response dynamics revealed the strongest differ-
ential activity between naturalistic textures and noise in V2, followed 
by V1, ITr and TI-ITi, with minimal or no modulation in the remaining 
areas (Fig. 2h). In V2, the difference persisted for the duration of the 
stimulus. Although responses in V1 commenced well before those in V2 
(Fig. 1i), the divergence between texture and noise responses occurred 
later in V1 (at 90 ms) than in V2 (at 45 ms), suggesting that the texture 
modulation in V1 may arise through feedback from V2. This interpreta-
tion is further supported by the finding that V2 encoded texture family 
identity earlier than V1 (Fig. 2i).

A central function of the visual hierarchy is to recognize and cat-
egorize objects to guide vital behaviours such as navigation, forag-
ing or mating. To investigate high-level object representations in the 
tree shrew ventral stream, we presented a rich stimulus set consisting 
of 1,593 images of animals, body parts, faces and everyday objects  
(Methods). This same stimulus set has previously been used to charac-
terize tuning in macaque inferotemporal (IT) cortex, enabling direct 
comparisons between object recognition mechanisms in primates and 
tree shrews8. Stimuli were adjusted to match the receptive field loca-
tion of recorded neurons (Methods). Response rasters from example 
cells showed diversity in object selectivity across different neurons in 
the tree shrew ventral stream (Fig. 3a). Among the six areas recorded, 
a similar proportion of visually responsive cells responded to object 
stimuli across V2, TP, TI-ITi and Pulv (Fig. 3b). Notably, a much larger 
fraction of visually responsive cells in TI-ITi responded to object stimuli 
compared with gratings (Fig. 2b), consistent with temporal areas occu-
pying a higher level in the visual hierarchy. To quantify the reliability of 
object-driven responses, we computed the ‘explainable variance’—the 
portion of neural response variance attributable to stimulus identity 
rather than trial-to-trial variability (Methods). After V2, the explainable 
variance in responses to these complex object stimuli decreased nota-
bly (Fig. 3c), indicating that responses in more anterior areas were less 
consistent across trials. To determine whether the explainable variance 
could be accounted for by low-level visual features, we analysed the 
contributions of luminance, contrast and spatial frequency; in each 
area, only a small fraction of the variance could be explained by such 
features (Fig. 3c and Extended Data Fig. 2).

To better understand the nature of the neural code used by each 
area, we modelled neural responses using AlexNet40, an eight-layer 
DNN trained on object recognition (Fig. 3d). In macaques, single IT 
neurons are well described by an ‘axis model’, in which each cell lin-
early projects incoming stimuli onto a preferred axis in a DNN-derived 
feature space8,13. In these models, the preferred axes span a relatively 
low-dimensional basis—such that, for example, just 50 dimensions are 
sufficient for accurate reconstructions of faces from macaque face 
patches41. To test whether this principle also applies in the tree shrew, 
we computed the preferred axis of each neuron across six recorded 
areas using the first 50 principal components from AlexNet layer 
FC6. We focused on FC6 to clarify whether tree shrew cortex repre-
sents a high-level object space, as observed in macaque IT cortex8. 
Consistent with axis-based coding, neurons in all six areas showed 
ramp-shaped tuning along their preferred axes (Fig. 3e and Methods). 
Moreover, cells showed flat tuning along their principal orthogonal 
axis (that is, longest axis orthogonal to the preferred axis; Fig. 3f and  
Methods).
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Previous studies in primates have shown that early layers of AlexNet 
and other DNNs best explain neuronal activity in early retinotopic 
visual areas, whereas later layers best explain responses in IT cortex8,13. 
We asked whether a similar pattern holds across the tree shrew ven-
tral stream. To test this, we regressed single-cell firing rates against 
the first 50 principal components of each layer in AlexNet (Methods) 
and identified the layer that best explained the variance in each cell’s 
response. For one representative cell in V2, AlexNet layer Conv4 best 
explained its responses (Fig. 4a). Across the V2 population, we found 
that intermediate layers—specifically Conv4 and Conv5—consistently 
had greater explanatory power than either early or late layers (Fig. 4b).

To compare the explanatory power of different AlexNet layers 
across brain areas, we calculated the sum across cells within each 
area of the variance explained by the various AlexNet layers, and nor-
malized these sums by the sum across cells of their explainable vari-
ance (Methods). This analysis revealed that early visual areas V1 and 

V2 were best explained by intermediate layers—specifically Conv3 
to Conv5—whereas anterior areas TI-ITi and ITr were best explained 
by the high-level FC6 layer (Fig. 4c). However, the absolute variance 
explained by AlexNet was lower in these higher cortical areas (Extended 
Data Fig. 3a,b), consistent with the reduced trial-to-trial reliability of 
responses to object identity observed in anterior regions (Fig. 3c). One 
possible explanation is that AlexNet may lack the expressive capacity 
to fully capture response properties of anterior tree shrew regions, 
which have been proposed to be multimodal and not exclusively visual19

To investigate which feature axes accounted for the most variance 
in neural responses across areas, we examined how much variance was 
explained by individual feature principal components from AlexNet 
layer FC6. In general, earlier principal components explained the great-
est proportion of variance in neural responses, with some variability 
across areas (Fig. 4d). We also analysed how well specific FC6 features 
could be decoded from population activity in each visual area (Fig. 4e). 
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Fig. 2 | Encoding of orientation, spatial frequency, and texture across tree 
shrew ventral visual areas. a, Example frames of static grating stimuli. Stimuli 
were varied in orientation, spatial frequency and phase, and were interleaved 
with grey frames. b, Percentage of visually responsive cells (see Fig. 1e) that 
responded to static gratings in individual recording sessions (dots) and averaged 
across recording sessions (bars). c, Responses of a representative V2 and ITr 
cell to static gratings differing in orientation (represented circumferentially), 
spatial frequency (represented radially, cycles per degree) and phase (four 
small quadrants). Each dot represents a single trial; colour intensity represents 
responses strength. d, Percentage of variance of individual cells’ responses 
explained by orientation of the stimulus. Boxes represent 25th, 50th and 75th 
percentile; whiskers 5th and 95th. Letters in this and subsequent panels indicate 
Tukey grouping. Tukey analysis (α = 0.05) after ANOVA, F5, 1106 = 26.791, P < 10−24. 

Number of cells: V1 186, V2 500, Pulv 68, TP 79, TI-ITi 51 and ITr 228. e, Same for 
spatial frequency. Tukey analysis (α = 0.05) after ANOVA, F5, 1106 = 20.514, P < 10−18 
(same cells as d). f, Example frames of naturalistic texture (top) and spectrally 
matched noise (bottom). g, Percentage of visually responsive cells (see Fig. 1e) 
that responded to naturalistic texture or spectrally matched noise stimuli in 
individual recording sessions (dots) and averaged across recording sessions 
(bars). h, Time courses of population responses in each area to naturalistic 
texture (darker lines) and spectrally matched noise (lighter lines). Black arrows 
indicate the latency at which the two curves first significantly differed from 
each other (two-tailed t-test, P < 0.01). Shaded areas are standard errors of 
averages across cells. i, Percentage of variance in neural activity explained by 
texture image family (15 classes, see Fig. 2f).
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Fig. 3 | Objects are encoded across tree shrew ventral visual areas through 
axis coding. a, Spike raster plots for representative visually active cells from 
each of the areas in response to six groups of object stimuli, each optimal for one 
of the cells (stimuli shown on the left). Each dot represents an action potential 
in one of up to ten presentations of the stimulus; red line indicates stimulus 
onset. b, Percentage of visually responsive cells (see Fig. 1e) that responded  
to object stimuli in individual recording sessions (dots) and averaged across 
recording sessions (bars). c, Percentage of variance of neural responses explained 
in each area by object stimulus identity (left bars) and by low-level feature image 
indices (right bars). d, Schematic illustrating the processing of visual stimuli in 
layers of the artificial neural network AlexNet (top) and in areas of the tree shrew 
ventral visual pathway (bottom). e, Normalized neural responses to object 

images for 100 randomly selected cells in each of the six areas as a function of 
position of that image along the given neuron’s preferred axis in AlexNet FC6 
space (object space). The x axis is rescaled so that the range [−1,1] covers 98% of 
the stimuli. Inset, preferred axis (green arrow, Methods) of a representative cell 
(area V2) in object space. The coordinate axes represent the three AlexNet 
principal components (PCs) that most align with the cell’s preferred axis. Each 
dot represents an image, colour coded by the strength of the cell’s response  
to that image (blue, low; red, high). f, Responses as a function of normalized 
position along each cell’s principal orthogonal axis, that is, the axis in object 
space orthogonal to the neuron’s preferred axis that captured the most variance 
in AlexNet activations (Methods). Scale bar, 50 ms. Object images in panel a 
used with permission from ref. 8, Springer Nature Limited.
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Again, early principal components were most strongly represented, 
with decoding performance peaking in V2, substantially higher than 
in any other region. This finding aligns with the observation that FC6 
features explained more variance in V2 than in other areas (Extended 
Data Fig. 3c). Thus, even though V2 was best explained by Conv4 and 
Conv5 features, whereas TI-ITi and ITr were best explained by FC6 fea-
tures, FC6 features were nevertheless better represented in V2 than in 
these more anterior areas.

Given the strong performance of V2 in decoding AlexNet FC6 
features, we next asked whether activity in V2 might be sufficient 
to reconstruct objects using small neural populations, as has previ-
ously been shown in monkey IT cortex8. To test this, we used a large 
auxiliary dataset of 15,901 images, each passed through AlexNet to 
extract FC6 activations. From activity in each area, we reconstructed 
an FC6 activation vector and identified the image whose FC6 features 
were closest to the reconstruction (Extended Data Fig. 3d). To control 
for cell number, we performed reconstructions using 100 randomly 
selected cells from each area. Consistent with our results on parameter 
decoding (Fig. 4e), which were optimal in V2, images reconstructed 
from V2 closely resembled the original images, whereas images 
reconstructed from V1 or TI-ITi were notably less accurate (Fig. 4f). 
To quantitatively compare reconstruction accuracy across areas, we 
computed the distance between the reconstructed and actual FC6 
activation vectors for each image, normalized by the theoretical best 
decoding distance (Methods). This analysis revealed that V2 had 
the smallest normalized decoding distances of all areas—indicating 
the most accurate reconstructions—and matched the performance 
obtained when pooling neurons from all areas combined (Tukey analy-
sis after ANOVA, F6, 11144 = 151.248, P < 10−184; Fig. 4g). These results further 
underscore the rich yet compact object representation present in tree  
shrew V2.

Primate IT cortex contains regions composed of neurons that 
respond maximally to images from specific categories, for example, 
faces42–44. Such category-selective regions can be explained by a norma-
tive framework in which IT cortex encodes a general object space—a 
representational space defined by the first two principal components 
of the AlexNet FC6 features8,45. Within this space, different sectors cor-
respond to distinct object categories, such as faces, fruits and animals 
(Fig. 5a).

Does the tree shrew visual cortex, like the primate IT cortex, con-
tain regions specialized for representing distinct sectors of object 
space? To address this question, we projected the preferred axes of all 
recorded cells onto the same 2D object space (Fig. 5b). In V2, preferred 
axes were distributed across all four quadrants, whereas in other areas, 
they were largely confined to quadrants I and III. Given that different 
object categories are localized to distinct regions of this space, we 
predicted that individual tree shrew neurons would show selectivity for 
specific categories. Indeed, analysis of response rasters confirmed that 
neurons with preferred axes in the face sector were strongly face selec-
tive (Fig. 5c). Some face cells also responded to other round shapes, 
whereas others showed strong selectivity only for faces. In addition to 
face cells, we identified neurons selective for spiky, elongated objects 
(quadrant I), round inanimate objects (quadrant II) and spiky animate 
objects (quadrant IV) (Fig. 5d and Extended Data Fig. 4a,b). However, 
unlike the modular organization seen in primate IT, we found no evi-
dence for topographic clustering of category-selective neurons within 
tree shrew visual areas (Extended Data Fig. 4c).

Faces—particularly human faces, which comprised all our face  
stimuli—are not known to hold special behavioural importance for  
tree shrews46. To confirm that the cells were genuinely face selective,  
we computed a face selectivity index, defined as the difference bet
ween responses to faces and all other objects, for each individual 
cell (Methods). This confirmed small populations of highly face- 
selective cells (t ≥ 15) in most areas starting in area V2, with the highest 
percentages in TI-ITi and Pulv (Fig. 5e).

Primate IT cortex is highly specialized for object recognition and has 
long served as a foundation for studying visual form processing. To 
enable direct comparisons with our tree shrew dataset, we performed 
large-scale recordings in macaque monkeys using NHP Neuropixels 
probes. We presented the same 1,593 object stimuli while recording 
from V2, posterior IT (ITpost) and anterior IT (ITant) from two monkeys per 
area (Fig. 6a–c). We found that the explainable variance in responses to 
complex object stimuli increased along the primate visual hierarchy, 
from primate V2 to ITant (Fig. 6d), whereas in tree shrew visual cortex, 
it peaked in V2 (Fig. 3c). Similarly, image reconstruction performance 
improved along the primate hierarchy (Fig. 4g), whereas in tree shrews, 
it was most accurate in V2 (Fig. 6e). In contrast to tree shrews (Fig. 5e), 
we did not observe strongly face-selective cells in primate V2 (Fig. 6f). 
As expected, the number of face cells in primate ITpost and ITant was much 
higher. Notably, in one of the ITpost recordings, the probe partially tar-
geted a known face patch, resulting in a higher proportion of face cells.

Last, we asked how well neural populations in the primate and tree 
shrew visual systems could decode individual face or object identity. 
To test this, we trained classifiers to decode the identity of either 100 
faces or 100 general objects using neural activity from randomly sam-
pled subpopulations within each area (Fig. 6g and Methods). In tree 
shrews, all areas except TP showed above-chance decoding perfor-
mance for both faces and objects. When we restricted the analysis 
to only face-selective cells, face identity decoding improved further. 
Decoding performance in tree shrew V2 exceeded that in all other tree 
shrew areas for both face and object identity. By contrast, primate V2 
showed substantially lower decoding performance compared with tree 
shrew V2 (Fig. 6g). Indeed, decoding using tree shrew V2 activity was 
similar to that of primate posterior IT. As expected, primate anterior IT, 
which sits at the apex of the primate ventral visual hierarchy, showed 
the highest decoding accuracy.

A hallmark of the primate ventral stream is gradual emergence of 
view invariance, raising the question of whether a similar progres-
sion exists in tree shrews8,31,47. Using DNN models, we computed a pre-
dicted view invariance index (Methods) based on responses to the 
1,593 object images. In macaques, this predicted index was positively 
correlated with the empirically measured view invariance index, and 
both increased along the ventral hierarchy (Extended Data Fig. 5a–c). 
Applying the same approach to tree shrews, we found no such trend in 
the model-predicted responses (Extended Data Fig. 5d,e). This absence 
of a clear progression suggests that view invariance may not emerge 
in the same hierarchical manner—or may not be captured by current 
models—in the tree shrew ventral stream. However, direct empirical 
testing within each area is needed to determine whether view invari-
ance is a core organizing principle of the tree shrew visual pathway, as 
it is in primates32 and rodents48,49. Taken together, our findings show 
how visual processing along a series of interconnected areas in tree 
shrews compares to primates5,7–9,13,32 and rodents50–52, highlighting both 
important similarities and differences (Fig. 6h).

Discussion
Hierarchical processing is a central principle of object representation 
in artificial neural networks and in the primate visual system. Here we 
sought to determine the extent to which the ventral visual pathway of 
the tree shrew, a highly visual mammal that is one of the closest existing 
relatives to the primate53, is also organized hierarchically. Supporting 
the presence of hierarchical organization, we found that higher-level 
visual areas showed increased receptive field sizes, longer response 
latencies, greater selectivity for naturalistic textures compared with 
spectrally matched noise and higher proportions of single cells selective 
for faces. However, the tree shrew visual system showed notable devia-
tions from the primate hierarchy, with area V2 performing many func-
tions typically attributed to primate IT cortex. Indeed, area V2 carried 
the most complete representation of a high-level object space8 among 
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all areas, supported the most accurate object reconstruction across the 
tree shrew visual pathway, and contained strongly face-selective cells 
similar to those reported in primate IT cortex9, capable of supporting 
face identity decoding. These findings suggest a shallower visual hier-
archy in tree shrews. An open question for future research is the extent 
to which tree shrew area V2 encompasses all of the functions of primate 
IT cortex: for example, whether performance in object recognition 
tasks can be fully explained by the activity of V2 cells.

As a direct comparison, we performed the same experiments across 
three homologous regions in the macaque, including V2, IT anterior and 
IT posterior. This comparison confirmed that tree shrew and primate V2 
are functionally distinct: only in the tree shrew do we find a compressed 
hierarchy, with V2 implementing many of the computations character-
istic of primate IT. Our stimulus set was originally tailored for primate 
object recognition, thereby facilitating direct comparisons to primates. 
Future work is needed to extend these findings by incorporating further 

stimulus sets that include ethologically relevant objects, objects varied 
in view and depth, and multimodal stimuli. Notably, studies in rats using 
highly controlled visually morphed objects—designed to match lumi-
nance across transformations—led to the discovery of view invariance in 
rat visual areas laterolateral (LL) and lateral occipto-temporal (TO)48,49.

Our findings challenge the current focus on modelling mechanisms 
for high-level vision almost exclusively with deep feedforward net-
works54,55. Computationally, deep feedforward networks assist in the 
sequential disentangling of image features that are critical for dis-
crimination from orthogonal features such as orientation and size47,56. 
However, it is possible that V2 itself harbours a deep network architec-
ture implemented through local recurrence—for example, a circuit 
that, when temporally unrolled, could be functionally equivalent to 
a multi-layer feedforward network but would require fewer neurons 
to implement57. Future work may explore this possibility by analysing 
the local dynamics of feature selectivity within V2.
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We did not observe any striking qualitative differences in the com-

plexity of visual processing between area V2 and the more anterior 
areas in the tree shrew ventral stream (TP, TI-ITi and ITr). This raises 
the question of what functional distinctions exist between V2 and 
these anterior areas. One possibility is that the latter are involved in 
multi-sensory integration, consistent with known anatomical con-
nections to the pulvinar and higher-order auditory cortical areas19. 
Thus, these anterior regions may inherit their visual tuning from V2 
without undergoing extensive extra processing, with their primary 
role being the integration of visual features with features from other 
sensory modalities.

The finding of face cells in the tree shrew was particularly surpris-
ing. The existence of face-selective cells in primates has long been 
thought to reflect the importance of faces for primate social commu-
nication58. However, recent evidence argues that such specializations 
may instead arise from more fundamental principles governing how IT 
cortex represents a general object space8,45,59,60. Facial communication 
is not known to be ethologically important for tree shrews, which live 
in isolated monogamous pairs and rely primarily on olfactory cues for 
social recognition46. Thus, the presence of cells selective for human 
faces in tree shrew visual cortex supports the view that such cells can 
readily emerge from encoding of general dimensions of image varia-
tion, even in the absence of evolutionary pressures related to face-based 
social communication.

The tree shrew offers exciting advantages as a model organism for 
studying high-level vision, given its tractability for genetic and virus- 
mediated circuit approaches and its highly developed visual system. 
In particular, the tree shrew visual system seems to be more sophisti-
cated than that of the mouse, as evidenced by preferential responses to 
naturalistic textures, the presence of face-selective cells and the exist-
ence of five distinct visual cortical areas (V1, V2, TP, TI-ITi, ITr) showing 
progressively increasing receptive field sizes and latencies. Our study 
provides a roadmap for exploring visual circuits in this non-traditional 
model species and illuminates how brains of different sizes have been 
adapted for effective representation of the visual world.
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Methods

Experimental model and subject details
All experimental procedures on tree shrews were approved by the 
Caltech Institutional Animal Care and Use Committee and conformed 
to local and US National Institutes of Health guidelines, including the 
US National Institutes of Health Guide for Care and Use of Laboratory 
Animals.

Three male rhesus macaques (Macaca mulatta) were used in this 
study. All macaque procedures conformed to local and US National 
Institutes of Health guidelines, including the US National Institutes 
of Health Guide for Care and Use of Laboratory Animals. All macaque 
experiments were approved by the UC Berkeley Institutional Animal 
Care and Use Committee.

No statistical methods were used to predetermine sample size. The 
experiments were not randomized, and investigators were not blinded 
to allocation during experiments and outcome assessment.

Tree shrew experiments
Tree shrews (Tupaia belangeri) used in this study (n = 5), both male 
and female, were 6 months to 2.5 years old and weighed between 150 g 
and 300 g. Animals were singly housed in a 12-h light–dark cycle in the 
animal room. Their food and water aliquots were given ad libitum.

Surgeries. Tree shrews were injected with a preoperative dose of dexa-
methasone (5 mg kg−1, subcutaneously (s.c.)) and mannitol (1 mg kg−1, 
s.c.) to reduce swelling. Animals were anaesthetized with a cocktail of 
fentanyl, midazolam and dexdomitor (fentanyl 0.05 mg kg−1, mida-
zolam 5.0 mg kg−1, dexdomitor 0.25 mg kg−1, s.c.), shaved and posi-
tioned into a stereotaxic frame. Topical lidocaine gel (2%) was applied 
on the head and ears to prevent discomfort from ear bars and eye lubri-
cant was used to maintain hydration and clarity of eyes during surgical 
procedures. Levels of anaesthesia, breathing, SpO2 and heart rate were 
monitored throughout the entire procedure and body temperature 
was maintained with a heating pad at 37.5 °C. An incision on the scalp 
was performed and both skin and muscles were retracted. The exposed 
skull was levelled using the stereotaxic device with respect to bregma 
and lambda (pitch, roll and yaw). After alignment, locations of the cra-
niotomies for electrophysiological recordings were marked on the skull 
and a custom stainless steel headplate was secured to the skull using 
clear C&B Metabond (Parkell). A layer of Kwik-Cast (World Precision 
Instruments) was added on top the skull and a three-dimensionally 
printed custom cap was secured to the headplate to protect the brain 
and keep debris out. The anaesthesia was reversed with an injection 
of atipamezole-flumazenil (atipamezole 1.25 mg kg−1, flumazenil 
0.25 mg kg−1, s.c.) and the animal was allowed to recover for at least 
3 days before following procedures and recordings. One day before 
electrophysiological recordings in a new brain location, tree shrews 
were once again anaesthetized and monitored as described above.  
Using the marked locations on the skull, small (up to 1.5 mm of dia
meter) craniotomies were drilled and durotomy was performed. 
Through a small hole situated anterior of bregma, a 32 AWG chlorinated 
silver wire (A-M System) with a presoldered gold pin was implanted just 
above the brain surface and cemented to the skull to provide chronic 
grounding. A drop of silicone oil (30,000 cSt, Aldrich) was added over 
the holes to prevent brain from drying, a new layer of Kwik-Cast was 
applied on top of it and the three-dimensionally printed custom cap 
secured to the headplate. Anaesthesia was reversed and animal was 
allowed to recover as previously described.

Electrophysiological recordings. All electrophysiological recordings 
were made in awake, head-fixed tree shrews using high channel-count, 
silicon, Neuropixels v.1.0 probes configured to always acquire from the 
first 384 electrodes closest to the tip, providing a 3.84 mm of tissue 
coverage. The reference and the ground contacts on the Neuropixels 

probes were permanently soldered together. Recordings were made 
using an external reference configuration achieved by connecting the 
probe reference to the chronically implanted silver wire on the skull 
from which conductivity was routinely checked before recording with 
a multimeter. Each Neuropixels probe was mounted on a three-axis 
micromanipulator (New Scale Technologies) that was in turn mounted 
on the underside of a semicircular platform, allowing simultaneous 
insertion of up to four probes at different angles. Before the first inser
tion of a probe in a new location, DiI (1 mM in ethanol) was used to coat 
the shank, allowing subsequent probe track localization during ex vivo 
imaging. Neural signals were acquired at 30 kHz using OpenEphys 
software61. After the tip of each probe touched the surface of the brain, 
they were lowered to target at an average speed of 100 μm min−1 to 
avoid damage and let them settle for 15 min after reaching the target 
depth. Cameras were used to monitor animals during experiments 
and to ensure a continuative viewing of the visual stimuli presented 
during neural signals acquisition. After each recording experiment, 
probes were slowly retracted and immersed in 1% Tergazyme solution 
to remove tissue and silicone oil residues. For tree shrew Neuropixels 
experiments, we recorded from six anatomically distinct areas and 
5,690 total isolated single units. We recorded from V1 (Bregma −7.5; 
n = 695 units across 5 recordings from 2 animals), V2 (Bregma −6.8; 
n = 1,210 units across 5 recordings from 2 animals), Pulv (Bregma −4.0; 
n = 349 units across 4 recordings from 2 animals), TP (Bregma −6.4; 
n = 598 units across 2 recordings from 1 animal), TI-ITi (Bregma −3.5; 
n = 1,421 units across 3 recordings from 2 animals) and ITr (Bregma −1.5; 
n = 1,417 units across 5 recordings from 2 animals).

Injections. To trace the inputs to TP and ITr, intracranial injections 
were performed as described in the surgical procedure as above. The 
retrograde tracer cholera toxin subunit β was injected into TP (CTβ-488) 
and into ITr (CTβ-594) using a pulled glass capillary (World Precision 
Instruments) and a pressure injector (Micro4 controller, World Preci-
sion Instruments), at a flow rate of 50 nl min−1. The tracer was deliv-
ered at two depths below the cortical surface, 1 mm apart, to ensure 
adequate spreading. Stereotaxic injection coordinates were based 
on the Zhou and Ni Tree Shrew brain atlas62 (TP, anterior–posterior 
−6.43 mm, medial–lateral ±8 mm, dorsal–ventral −5.5 mm; ITr, anterior– 
posterior −1.54 mm, medial–lateral ±8 mm, dorsal–ventral −5 mm 
relative to bregma). Perfusions and histology were performed 7 days 
following injections.

Histology. After electrophysiological recordings or tracer expres-
sion, histological verification was performed for all tree shrews. Tree 
shrews were given ketamine + xylazine and perfused transcardially with 
0.9% saline, followed by 4% paraformaldehyde in 1× PBS. Brains were 
extracted and postfixed overnight in 4% paraformaldehyde at 4 °C. 
The brains were then transferred to 30% sucrose for cryoprotection 
and sectioned coronally at 100 μm on a cryostat (Leica Biosystems). 
Sections were washed with 1× PBS and then incubated for 30 min at 
room temperature in 4,6-diamidino-2-phenylindole/PBS (0.5 μg ml−1) 
for counterstaining. Sections were then mounted on slides and  
imaged with an epifluorescence microscope (Olympus VS120). For  
all representative images, similar results were obtained from at least 
two independent experiments.

Macaque experiments
Electrophysiological procedures in macaques followed previously 
described methods4,60. We used Neuropixels 1.0 NHP probes (45 mm 
long, with 4,416 contacts along the shaft, 384 of which are selectable at 
any given time) to perform electrophysiological recordings targeted 
to V2, posterior IT and anterior IT. Data were acquired using the Open
Ephys platform, and spike sorting was carried out using Kilosort3. To 
improve alignment between the guide tube and the probe, we devel-
oped a custom insertion system consisting of a linear rail bearing and 



a three-dimensionally printed fixture, enabling precise control of the 
insertion trajectory. Recording sites were selected using magnetic reso-
nance imaging-guided targeting methods as previously described63. 
During electrophysiology and behavioural experiments, monkeys 
were head-fixed and performed a passive fixation task in a dark room. 
Visual stimuli were shown on a liquid crystal display monitor (Asus 
ROG Swift PG43UQ) spanning 26.0° × 43.9° of visual angle. Gaze posi-
tion was continuously monitored with an infrared eye-tracking system 
(Eyelink), sampled at 1,000 Hz. Monkeys fixated on a small central spot 
(0.2° diameter) and received juice rewards every 2–4 s for maintaining 
successful fixation.

Visual stimulation
Visual stimuli presentation. Visual stimuli were generated and pre-
sented using custom Python scripts. Head-fixed tree shrews passively 
viewed a battery of visual stimuli shown using a ViewSonic monitor 
(70 × 39 cm, 60-Hz refresh rate, 1,920 × 1,080 pixels). The monitor 
was centred in front of the animals at a 25-cm distance. Stimuli were 
presented at 3 Hz, 167 ms of image presentation interleaved with 
167 ms of a grey screen. Three classes of visual stimuli were used in 
each experiment: static gratings, naturalistic textures and noise, and 
1,593 objects. In addition, ‘local sparse noise’ stimuli were used to map 
neurons’ receptive fields.

Local sparse noise. The screen was divided into a grid of 4 × 3 squares. 
In consecutive frames (100 ms), sparse white or black dots (5° square) 
were presented, one dot in each grid square. The locations of the dots 
within each rectangle were pseudo-randomly distributed to avoid 
spurious correlation between distant parts of the visual field27. To avoid 
interference between reconstruction of on and off receptive fields, each 
presented stimulus frame comprised either all black or all white dots on 
a grey field. A reduced version of this stimulus (with fewer frames) was 
used at the beginning of each experiment and analysed immediately 
to allow placement of ‘faces and objects’ stimuli in the centroid of the 
receptive fields for that recording session.

Static gratings. We presented full field sinusoidal gratings, varying 
in orientation (six evenly spread angles), spatial frequency (5 values 
between 0.1 and 1.6 cycles per degree) and phase (four positions), for 
a total of 120 different stimulus conditions. Each image was presented 
five times.

Naturalistic textures and noise. We presented images from two sub-
classes: naturalistic textures and a control set comprising spectrally 
matched noise. The naturalistic textures images were organized as 15 
families of 5 similar images. Each of the 150 images in the stimulus set 
was presented 5 times. We used two types of visual stimuli similar to 
ones previously used in primate studies: one set consisted of 15 families 
of texture images each comprising 5 closely related image samples of 
the same texture. These images reproduced statistical dependencies 
found in natural texture scenes5,64; a second control set consisted of 
noise images spectrally matched to each of the texture families.

Faces and objects. We presented images from two subclasses: 1,392 
objects and animals from http://www.freepngs.com and 201 faces from 
the FEI database8, for a total of 1,593 images. Each image was presented 
ten times. Images were presented at the previously determined centre 
of the receptive field of recordable cells and sized to cover 20° of the 
visual field, which covered most of the recorded neurons’ receptive 
fields.

Data analysis
Preprocessing and spike sorting. Neural signals from electrophysi-
ological recordings were preprocessed by subtracting the median 
calculated within each group of 24 channels from the data to eliminate 

common-mode noise. The median subtracted data were sent to Kilo-
sort2 for tree shrews and Kilosort3 for macaques65. Group median 
subtraction was applied, followed by a high-pass filter (150 Hz) and 
then whitening in blocks of 32 channels. The clusters automatically 
labelled by Kilosort algorithm as ‘good’ were in turn manually curated 
by hand and further analysed with Phy2.

Visually responsive cells. A cell was deemed responsive to a particular 
class of stimuli (gratings, textures and noise, or faces and objects) if its 
average firing rate in the period [0 100] ms following onset of stimuli 
of that class exceeded the expectation value based on a Poisson model 
trained on the firing rate in the period [−50 0] ms before onset of all 
the stimuli of that class. To be included in the ‘responsive fraction’ in 
Figs. 2b,g and 3b, a cell’s average response had to exceed the baseline 
by at least five standard deviations. For the faces and objects, the total 
time elapsed between the first and the last of the ten blocks of visual 
presentations was so long (~80 min) that stability of responses was a 
concern. Accordingly, we also preprocessed these data to analyse only 
those blocks in which the responses were stable for a given cell. For each 
block, we extracted the average waveform of all the spikes from the 
given cell and calculated its peak-to-peak amplitude. We then picked 
the third largest amplitude among the blocks and set an amplitude 
threshold at 0.6 times this value. We counted for each block the num-
ber of individual spikes with amplitudes exceeding this threshold. We 
calculated the mean and standard deviation of these counts among 
blocks, and excluded from analysis any block in which the count was 
more than two standard deviations below the mean. In all cases except 
Fig. 1e, results are expressed as a percentage of visually responsive cells, 
that is, of cells that respond to any of the stimulus classes.

Receptive field analysis. The receptive field size, amplitude and qual-
ity were computed by first calculating a 2D histogram of spike counts 
at each of 576 locations on the monitor (32 × 8 matrix). We modelled 
these histograms as a 2D Gaussian peak on top of a constant baseline. 
To prevent overfitting, the shape of the Gaussian was forced to be cir-
cular rather than elliptic. A cell was considered to possess an (ON or 
OFF) receptive field if the number of spikes within the Gaussian peak 
exceeded expectation from a null model. Specifically, we calculated 
the expected number of spikes that would be elicited by (ON or OFF) 
stimuli within a 10° radius from the centre of the Gaussian under the 
null model of the baseline as well as the actual number of spikes elicited 
by stimuli within that same area. The number of standard deviations 
by which the actual number of spikes exceeded the null expectation 
was considered the ‘quality’ of the receptive fields. Only cells with ON 
or OFF receptive field quality greater than five were considered to 
possess a receptive field.

Half-peak latency. For each neuron, we calculated the average res
ponse to all the gratings and texture or noise stimuli as a function of 
latency after stimulus onset. We found the peak value in this peristimu-
lus time histogram and kept only cells in which the peak exceeded the 
99.75th percentile of the Poisson distribution predicted from baseline 
firing. The half-peak latency of a cell was defined as the latency at which 
its response first exceeded a threshold halfway between its baseline 
firing rate and the peak.

Preferred orientation and spatial frequency. We analysed responses 
to gratings in terms of orientation and spatial frequency of the grat-
ings. First, we grouped trials by orientation and fitted a modified Von 
Mises distribution to the response data for each neuron, in which the 
orientation space of 0° to 180° was treated as the full period for the 
purpose of the distribution. The preferred orientation of a cell was 
the centroid of the fitted distribution. Separately, we grouped trials by 
spatial frequency. We fitted a Gaussian distribution to the responses in 
log-frequency space. The preferred spatial frequency of a cell was the 
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centre of the fitted distribution. In Fig. 2d,e, only cells were included 
in the count in which the amplitude of the (Von Mises or Gaussian) 
peak was at least 0.5 times the average firing rate during all gratings 
responses of the given cell.

Percentage variance explained. In Fig. 2d,e,i we plot the percentage 
of variance in neuronal activity that is explained by various discrete or 
categorical variables. (We treat orientation and spatial frequency as 
discrete variables here.) First, we calculate the total variance (Vtotal) in 
neuronal activity across trials for a given neuron. Then we regress the 
activity onto the categorical variable (k − 1 more degrees of freedom, 
where k is the number of values the variable can attain) and calculate 
the residual variance (Vresidual). By definition, the explained variance is 
the difference between total and residual variance, and the plotted 
percentage is: 100% × (Vtotal − Vresidual)/Vtotal. In Fig. 2i, we separately add 
up the total and residual variances for all the neurons in an area before 
normalizing. (That is, we plot the percentage of all the variance in the 
area that is explained by the variable, rather than the average across 
cells of the explained variance for each cell.)

Explainable variance. To derive an upper bound on the maximum 
fraction of variance that could theoretically be explained by the DNN, 
we calculated the ‘explainable variance’ of the neuronal responses as 
the split-half reliability of those responses using the Spearman–Brown 
formula 2ρ/(1 + ρ) applied to the correlation between the responses to 
the same image in one half of the trials to the other half8.

Preferred axis (AlexNet). We extracted the activations of the 4,096 
units in layer FC6 of AlexNet in response to each of the 1,593 images 
and performed principal component analysis to reduce the 4,096- 
dimensional space down to 50 dimensions. For each cell, we calculated 
which axis in this space captured the largest fraction of the variance 
in its responses to all but 10% of the images. We then calculated the 
projection onto the found axis of the remaining images. We repeated 
this process ten times, each time keeping a different set of images as a 
test set. This yielded projection values for every image in the dataset. 
The average of the ten axes found is the cell’s overall preferred axis. 
We defined bins over the projection values and calculated the aver-
age response of the cell to all the images in that bin. Each pixel in the 
matrices in Fig. 3e represents one such average.

Principal orthogonal axis (AlexNet). As a control, we took the first prin-
cipal component of the AlexNet responses and, for each cell, projected  
it down to the hyperplane orthogonal to that cell’s preferred axis. This 
we call the principal orthogonal axis for that cell.

Encoding and decoding AlexNet activation from neural activity. 
For the encoding analysis of Fig. 4d, we predicted each neuron’s 
image-evoked firing rates from AlexNet principal components using lin-
ear regression. Model performance was evaluated on held-out images.  
The total variance explained by each PC across all neurons within an 
area was normalized by the total explainable variance across those 
neurons (estimated by split-half reliability across stimulus repeats). 
For the decoding analysis of Fig. 4e, we repeatedly selected 100 cells 
at random from a given area, and used these subsampled cell popula-
tions to regress the individual principal components of AlexNet. After 
repeated sampling, we calculated the average fraction of the AlexNet 
principal component’s variance that was explained by the neural data 
from a given area.

Object reconstruction and normalized decoding distance. Image 
reconstructions were performed as previously described8,66. To gener-
ate images that reflect the features encoded in the neural responses, 
we passed into AlexNet images from an auxiliary database comprising 
a much larger set of 15,901 images, none of which was previously shown 

to the animal. For each stimulus image presented to the animal, the 
feature vector decoded from the neural activity was compared with 
the feature vectors of the larger auxiliary stimulus set. We defined 
the reconstructed image as the image in the auxiliary dataset with 
the smallest Euclidean distance to the decoded feature vector of the 
original image.

Given that the auxiliary images used for reconstruction did not 
include any of the objects shown to the animals (limiting how good the 
reconstruction can be), we computed a ‘normalized decoding distance’ 
to quantify the reconstruction accuracy for each object:

v v
v v

Normalized decoding distance =
| − |

| − |
recon original

best possible recon original

where vrecon is the feature vector reconstructed from neuronal responses 
(obtained by using the Moore–Penrose pseudoinverse to transform the 
predicted features from neuronal data back into the space of AlexNet 
layer FC6 activations), voriginal is the AlexNet FC6 feature vector of the 
image presented to the animal and vbest possible recon is the feature vector of 
the best possible reconstruction. A normalized distance of one means 
that the reconstruction has found the best solution possible.

Face selectivity. For every cell we quantified its selectivity to faces 
by calculating the t score between its responses to faces and its  
responses to the rest of the images. In Fig. 6c, we sorted cells in both 
macaque IT targets by face selectivity index calculated as FSI = (mean 
responseface − mean responsenon-face objects)/(mean responseface + mean 
responsenon-face objects).

Face and object identity decoding. We trained Gaussian naive Bayes 
classifiers to decode the identity of objects or faces from neural popu-
lation activity. For each area, we repeatedly sampled a fixed number 
of neurons (up to 100) and extracted their trial-by-trial spike counts 
in response to a randomly chosen set of 201 images (objects or faces).  
Classifiers were trained on 9 of 10 repeats per image and tested on the 
held-out repeat, with the train/test assignment randomized across 
repetitions. This sampling procedure was repeated 500 times for neu-
ron subsets and 200 times for train/test splits. Decoding accuracy 
was defined as the fraction of correctly identified images, and chance 
performance (1/201) was indicated by dashed lines. Final accuracy 
curves reflect the mean performance across all resamplings of neurons 
and repeats.

Invariance index. The invariance index was calculated as the mean 
of the Pearson correlation coefficients between the frontal view and 
23 other non-frontal views, averaged across identities. This index  
reflects the consistency of the neuronal response to the same stimulus 
presented under different conditions.

Low-level image features. To test whether our results could be attrib-
uted to neuronal responses to low-level image features, we performed 
three analyses. First, we calculated 13 different indices for each image,  
capturing low-level properties such as overall luminance, object 
contrast and basic shape parameters. For each visual area, we then 
determined the percentage of the total variance in neuronal firing 
explained by each index. Second, after mapping the specific receptive 
field locations for individual cells, we quantified how much variance in 
each cell’s firing rate could be explained by the luminance or contrast 
within its receptive field following previously described methods48. 
Aggregate results per area were then compared with the amount of 
variance explained by image identity. Finally, to test whether the shrew 
visual system was limited by spatial resolution, we divided the 1,593 
images into seven groups based on their spatial frequency content 
and calculated the fraction of neuronal population activity explained 
by image identity within each group.



Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors (F.F.L. and D.Y.T.) upon reasonable request.
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Extended Data Fig. 1 | Anatomical inputs to intermediate (TP) and anterior 
(ITr) nodes of the tree shrew ventral pathway. (a) Schematic of injections of 
retrograde tracer CTβ−488 (green) into TP and CTβ-594 (red) into ITr. (b) Coronal 
histological sections showing retrogradely labeled cells projecting to TP (green) 

and ITr (red) and counterstained with DAPI (grey). Representative samples out 
of n = 2 animals. Scale bars: 1 mm / 0.5 mm (insets). Adapted with permission 
from ref. 62, Springer.



Extended Data Fig. 2 | Object responses are largely not accounted by 
low-level features. (a) Examples of the two images with the lowest (left) and 
highest (right) value for horizontality, internal contrast, circularity and area. 
(b) Histogram indicating the average fraction of variance in the firing rate 
explained by various low-level image feature indices. (c) Schematic of 
quantification of luminance and contrast impinging on each receptive field. 
We computed the average luminance and contrast (second derivative of 
luminance) falling inside the ON and OFF receptive fields of each cell, and 
average across the two. (d) Percentage of variance of neural responses explained 

by object stimulus identity in each area. Dark bars correspond to the part of the 
variance accounted for by luminance impinging each receptive field. (e) Same, 
but dark bars correspond to contrast. (f) Representative objects with increasing 
high spatial frequency content from low (leftmost column) to high (rightmost 
column). (g) Power spectrum across groups of images in (a) relative to the 
middle spatial frequency group. (h) Percentage of variance of neural responses 
explained by object stimulus identity in each area, separated into categories 
based on spatial frequency. Object images in panels a, c and f used from ref. 8, 
Springer Nature Limited.
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Extended Data Fig. 3 | Explanatory power of AlexNet and image 
reconstruction. (a) Aggregate explanatory power of the AlexNet layer that 
best explained each given area. (b) Fraction of variance in the firing rates of 
individual cells (dots) explained by different AlexNet layers plotted against the 

fraction of the total explainable variance in that cell (Methods). (c) Aggregate 
explanatory power of AlexNet layer FC6 over different areas. (d) Schematic of 
image reconstruction approach. Images in panel d used from ref. 8, Springer 
Nature Limited.



Extended Data Fig. 4 | Cells selective to different sectors of object space 
with no obvious topographical organization in object space for each area. 
(a) Left: Projections of each TI-ITi cell’s preferred axis onto the first two PCs of 
object space (replicated from Fig. 5b). Right: Raster plots of three representative 
TI-ITi cells from quadrants I, II, and IV indicated by letters; twenty stimuli from 
each quadrant were randomly chosen to generate raster plots. Scale bar: 50 ms. 
Top five preferred images for each cell. (b) Same for ITr. (c) Selectivity of cells in 

each area as a function of recording depth along the Neuropixels probe. In each 
of the six plots, each dot represents one cell, the color of the dots indicates the 
depth at which the cell was recorded (inset, right), and the position of the dot 
indicates the mean projection of the 10 most preferred images onto the first 
two PCs of object space. Object images in panels a and b used from ref. 8, 
Springer Nature Limited.
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Extended Data Fig. 5 | DNN-predicted indices of view invariance are similar 
across all tree shrew ventral visual areas. (a) Schematic showing workflow 
for predicting neuron responses for a new set of stimuli. 1593 images were 
passed through AlexNet (top). Activations in AlexNet layer FC6 were used to 
linearly predict neural responses evoked by each image when shown to the 
animal. This yields a weight matrix W that optimally predicts a neuron’s response 
based on the image features F. Next, the weight matrix is used to predict neuron 
responses to 1224 images consisting of 51 objects at 24 views that were not 
shown to the tree shrew (bottom). (b) Responses of three example cells from 
macaque V2, posterior IT and anterior IT, to 50 objects (columns) each at 24 

different views (rows). Top panel show actual responses, bottom panel shows 
responses predicted from an AlexNet model built from responses to 1593 
images (see Extended Data Fig. 5a). (c) Same as (b) but for predicted responses 
of six example tree shrew neurons from all areas. (d) Histograms of invariance 
indices (Methods) of macaque V2, posterior IT and anterior IT neurons, calculated 
from actual responses (left) and predicted responses (right). Vertical lines 
indicate means. (e) Histograms of invariance indices of predicted responses 
across all tree shrew areas. Object images in panel a used from ref. 8, Springer 
Nature Limited.
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