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Abstract
We constructed a simulated spiking neural network model to investigate the effects of random
background stimulation on the dynamics of network activity patterns and tetanus induced network
plasticity. The simulated model was a “leaky integrate-and-fire” (LIF) neural model with spike-
timing-dependent plasticity (STDP) and frequency-dependent synaptic depression. Spontaneous and
evoked activity patterns were compared with those of living neuronal networks cultured on multi-
electrode arrays. To help visualize activity patterns and plasticity in our simulated model, we
introduced new population measures called Center of Activity (CA) and Center of Weights (CW) to
describe the spatio-temporal dynamics of network-wide firing activity and network-wide synaptic
strength, respectively. Without random background stimulation, the network synaptic weights were
unstable and often drifted after tetanization. In contrast, with random background stimulation, the
network synaptic weights remained close to their values immediately after tetanization. The
simulation suggests that the effects of tetanization on network synaptic weights were difficult to
control because of ongoing synchronized spontaneous bursts of action potentials, or “barrages.”
Random background stimulation helped maintain network synaptic stability after tetanization by
reducing the number and thus the influence of spontaneous barrages. We used our simulated network
to model the interaction between ongoing neural activity, external stimulation and plasticity, and to
guide our choice of sensory-motor mappings for adaptive behavior in hybrid neural-robotic systems
or “hybrots.”
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Cultured neural network; spike-timing-dependent plasticity (STDP); frequency-dependent
depression; multi-electrode array (MEA); spatio-temporal dynamics; tetanization; model; plasticity;
cortex; bursting; population coding

Introduction
In vitro model systems are helpful to understand brain functions because they reduce the brain's
overwhelming complexity. For example, cultured networks have been used to study the
nervous system because the external inputs are well controlled and do not compete with the
behavioral drives of an intact animal, such as thirst and attention. Added advantages include
high accessibility to microscopic imaging and pharmacological manipulation. Cultured
networks express many aspects of the neural dynamics observed in animals while providing a
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much simpler network to study. By applying multi-electrode array (MEA) technology,
researchers have recorded and electrically stimulated cultured networks at multiple spatial
locations (Gross et al., 1993b; Tateno and Jimbo, 1999; Shahaf and Marom, 2001). We
developed a closed-loop paradigm (Potter et al., 1997; DeMarse et al., 2001; Potter et al., 2004)
consisting of a sensory-motor loop between a cultured network and a robot or animat (Meyer
and Wilson, 1991) in order to study sensory processing, memory formation, and behavioral
control. We call this embodied hybrid neural-robotic system a “hybrot” (Fig. 1) (Potter et al.,
2004).

Left to themselves in culture medium, dissociated neurons spontaneously grow and form
synapses with neighboring neurons, developing complex patterns of activity that suggest an
intrinsic drive to form a network and share information. Little is understood of this activity or
how its plasticity relates to adaptive behavior in animals. By embodying an in vitro model in
an environment with chosen physical associations, we hope to discover how it could learn these
associations. We have used cultures on MEAs in several hybrots (Bakkum et al., 2004) for
studying sensory-motor dynamics in cultured networks, but in order to study learning behavior,
we need a better understanding of plasticity at the network level. Here we applied a neural
network simulation approach to investigate the interactions between ongoing network activity,
external stimulation, and network plasticity to better choose the mappings from neural activity
to hybrot behavior and from environmental feedback to neural stimulation.

Activity-dependent modification of synaptic strength plays a central role in the learning and
memory processes in the central nervous system (Bliss and Collingridge, 1993). Two important
cellular mechanisms of synaptic modification, long-term potentiation (LTP) (Bliss and Lφmo,
1973) and long-term depression (LTD) (Linden, 1994), have been studied mainly as changes
in the response of single neurons or in local field potentials at single sites. Those changes in
response have been experimentally induced by a strong electrical stimulation called a tetanus.
Jimbo and co-workers have shown that these cellular plasticity mechanisms scale to the
network level, studied in cultured neurons on MEAs (Jimbo et al., 1999). In their study both
LTP and LTD were observed, though the change could not be predicted or controlled. This
lack of predictability and controllability makes it difficult to create effective learning protocols
for hybrots. We hypothesize that the effects of a tetanus on network synaptic weights are
difficult to control because the synaptic weights are driven to other attractors by the
synchronized spontaneous bursts of action potentials, or “barrages,” which are the most
prominent feature of the electrical activity of dissociated cortical cultures (Gross et al.,
1993a; Wong et al., 1993; Kamioka et al., 1996; Gross and Kowalski, 1999). Our simulation
compared the relative contributions of ongoing spontaneous activity and input tetanization on
network plasticity.

Methods
Living Cultured Neuronal Network Model

Cell Culture, Recording, and Stimulation System—Dense cultures of dissociated
neocortical neurons were prepared as described before (Potter and DeMarse, 2001). Briefly,
embryonic rat cortices were dissected and dissociated using papain and trituration. Cells were
densely plated (2500 cells/mm2) on MEAs (MEAs; MultiChannel Systems, Reutlingen,
Germany) precoated with polyethyleneimine and laminin. Cultures were allowed to mature for
3 wk in serum-containing Dulbecco's Modified Eagle Medium (DMEM)-based medium before
experiments were performed. Stimuli (biphasic, 600 mV × 400 μs) were delivered using our
custom-made stimulator (Wagenaar and Potter, 2004). Responses were recorded using
MultiChannel Systems hardware and our publicly available acquisition and analysis software,
Meabench.1
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Stimulation Protocol—Random background stimulation was performed on one cultured
network. For all 53 usable electrodes, 53 trains of 1/53 Hz stimulation generated by a Poisson
process were applied.

Artificial Neural Network Model
The Neural Circuit Simulator (Natschlager et al., 2002) was modified to produce five artificial
neural networks with the following features. 1000 leaky integrate-and-fire (LIF) neurons with
a total of 50,000 synapses were placed randomly in a 3 mm × 3 mm area (see Fig. 2A). All
synapses were frequency-dependent (Markram et al., 1998; Izhikevich et al., 2004) to model
synaptic depression; the synaptic efficacy was determined by the probability of release of
neurotransmitters depending on the mechanism of frequency dependence, which recovered
with a time constant of 12 ms. Seventy percent of the neurons were excitatory, with STDP
(Song et al., 2000) at all excitatory synapses. The other neurons were inhibitory (30%) (Marom
and Shahaf, 2002). The distribution of the synaptic connection distances followed the
distribution found by Segev and Ben-Jacob (Segev and Ben-Jacob, 2000): neurons tend to
make many short synaptic connections but a few long ones as well. The number of synaptic
connections per neuron followed a Gaussian distribution and each neuron had 50 ± 33 synapses
onto other neurons. The conduction delay was proportional to the synaptic connection distance,
and the conduction velocity was set to be 0.3 m/s (Kawaguchi and Fukunishi, 1998). Gaussian
random noise was introduced into each neuron independently as fluctuations in membrane
voltage: 30% of the neurons (“self-firing neurons”) had variance at a high enough level to
initiate spikes (Latham et al., 2000), whereas the rest exhibited only subthreshold fluctuations.
An 8 × 8 grid of electrodes with 333 μm inter-electrode spacing was included. All electrodes
could be used for stimulation, and 60 of these (except corner electrodes 11, 18, 81, and 88)
were used for recording (Fig. 2B). One stimulation electrode stimulated 76 ± 12 (n = 5 simulated
networks) of the closest neurons.

Some differences between our artificial neural network and our living network should be noted.
In our artificial neural network, external stimulation was set to generate activity only on nearby
neurons' “cell bodies;” an electrode affected about 76 neurons. However, electrical stimulation
applied to our cultured neurons by an MEA could also evoke action potentials on axons
(McIntyre and Grill, 2002; Wagenaar et al., 2004), generating spikes on neurons that may be
far from the electrode, directly without synaptic transmission. Unfortunately, little
experimental evidence exists for the number of neurons or the range that one stimulus electrode
could affect in cultured living networks.

Artificial Neural Network Initialization and Stimulation Protocol
All excitatory synaptic weights were initially set to 0.05 and could vary between zero and 0.1
owing to STDP. At the maximal weight, each spike would have a 50% probability of evoking
a spike in postsynaptic neuron, owing to its summation with intrinsic noise. The synaptic
weights for the inhibitory connections were fixed at −0.05. The networks were run for 2 h in
simulated time until the synaptic weights reached the steady state. Most of the excitatory
synaptic weights (93 ± 2%) in five simulated networks were less than 0.01 or greater than 0.09.
This bimodal steady-state distribution of weights arose from the STDP learning rule, as
previously observed by Song et al. (2000), and Izhikevich and Desai (2003). The set of synaptic
weights after 2h, which stabilized without external stimuli, was used for the subsequent
simulation experiments as the initial state. Some of the parameters in our simulated network
were approximated from studies of acute slices (Markram et al., 1998; Song et al., 2000) and
from the simulation of neocortical networks (Izhikevich et al., 2004).

1http://www.its.caltech.edu/∼wagenaar
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Two types of electrical stimuli were delivered to the simulated networks, tetanization and
background stimuli. Tetanization was applied simultaneously at two stimulation electrodes
(electrode 33 and 66, see Fig. 2B) at 20 Hz for either 10 s or 5 min; tetanization was used to
induce change in the network synaptic weights. The background stimuli were applied to all 64
electrodes, one at a time, with random intervals generated by Poisson process, at an average
rate of 1/64 Hz per electrode. Thus, each electrode stimulated the simulated network with
different random sequences, at an average of one pulse per second for the whole array.

Four experiments were performed on each of five simulated networks to investigate how the
tetanization and the random multisite background stimulation affected the network synaptic
weights:

“Short”: Spontaneous activity was recorded for 10 min (pretetanization period), before a
short tetanization was applied for 10 s. After tetanization, spontaneous activity was
recorded for an additional 50 min (posttetanization period).

“Long”: Same as “Short,” but the tetanization period was 5 min instead of 10 s.

“Short+Background”: Same as “Short,” but with random multisite background
stimulation turned on during the whole simulation.

“Long+Background”: Same as “Long,” but with random multisite background
stimulation turned on during the whole simulation.

Measures of Network Activity and Network Synaptic Weights
To help visualize activity patterns and plasticity in the artificial neural network, we introduce
the Center of Activity (CA) and Center of Weight (CW) (analogous to center of gravity) to
describe the spatio-temporal dynamics of the network-wide firing activity and network-wide
synaptic strength in our simulated networks, respectively.

Calculation of CA—The spatio-temporal patterns of network-wide population activity is
described by CA trajectories in this study. The CA indicates the magnitude of total activities
and the “inhomogeneity” of the spatial activity distribution. That is, if the network is firing
“homogeneously” the CA will be at the center of the dish, whereas if the network fires mainly
in one corner then the CA will move to that direction.

Assume A is a 1 by 1000 vector which represents the number of spikes at 1000 neurons in the
interval [t, t+TW], where TW is a small time window. To maintain a sufficient amount of spikes
and high temporal resolution, TW was chosen as 10 times the integration time step of
simulation. Let X(i) and Y(i) indicate the horizontal and vertical distances from the ith neuron
to the center of the 3 mm × 3 mm dish, respectively. Then the CA at time t is a two dimensional
vector

(1)

The CA trajectory from time t0 to t1 with time step Δt (set to 1/5 th of TW) is defined as

(2)
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The CA is related to the population vector description (Caminiti et al., 1990), in that both are
vector summations of activity, but it is distinct. The population coding principle seems to be
widespread in the brain, since it has been found in the motor cortex (Georgopoulos, 1994),
premotor cortex (Caminiti et al., 1990) and other cortical areas. It demonstrates how the firing
rates of a group of broadly tuned (e.g., to a direction of arm movement) neurons taken together
provide an accurately tuned representation. Instead, the CA depicts the “population activity
flow” in the neuronal circuitry space on a much quicker time scale.

Spontaneous Barrage Detection and Clustering of Barrage CA Trajectories—
Spontaneous barrages in simulated networks were classified into different clusters according
to their CA trajectories. A firing rate histogram was obtained by counting the number of spikes
network-wide in 10 ms bins. Bins with more than 20 spikes were considered a part of a barrage.
The length of the barrage was defined as the time span of consecutive bins with a number of
spikes over this threshold. CA trajectories were calculated for each barrage and aligned to each
other at the peaks of the corresponding firing rate histograms. This alignment had similar results
but operated more efficiently compared with shifting the lag on one trajectory to gain the
highest cross-correlation with another. The beginnings and/or the ends of the CA trajectories
of shorter than maximum length were padded with zeros. Each same-length CA trajectory was
then reshaped into a one-dimensional vector by appending the y values of its CA trajectory to
the x values. Clustering was performed with the k-means algorithm, run multiple times for
different k values. The best of the clustering results was selected by choosing the k value with
best Davies–Bouldin validity index (Davies and Bouldin, 1979).

Calculation of CW—Plastic changes in the simulated networks' functional architecture can
be represented by the trajectory of the CW. Let W be a 1 by N vector, where N is the total
number of excitatory synapses, representing the weights of every synapse at time t. Let X(i)
and Y(i) indicate the horizontal and vertical distances from the postsynaptic neuron of the ith
synapse to the center of the dish. Then, the CW of time t is a two dimensional vector

(3)

The CW trajectory from time t0 to t1 with time step Δt is defined as

(4)

Note that while the CA trajectory describes the spatio-temporal patterns of signal propagation
in typically brief time intervals, the CW trajectory shows the dynamics of connection strengths
changing over a typically larger time scale. In our case, the CA represented the neural activity
flowing during a barrage whereas the CW described the network's plasticity over the duration
of a simulation.

Results
We first compared our simulated neural network with living networks of rodent cortical
neurons. Our LIF model and the living networks expressed similar spontaneous activity
patterns. Raster plots and firing rate histograms of spontaneous activity and evoked responses
obtained from both in vitro and simulated networks are shown together for comparison and a
remarkable similarity was achieved (Fig. 3). For spontaneous activity, the barrage rates were
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0.70 Hz and 0.73 Hz, and the proportion of spikes in barrages were 76% and 71%, in living
and simulated networks, respectively (Fig. 3A,B).

In order to investigate the effects of tetanization on patterns of spontaneous activity, the CA
trajectories were calculated for every spontaneous barrage in the artificial neural networks.
Figures 4 and 5 depict 2387 barrages detected in the “long” experiment. The CA trajectories
of these barrages were calculated and classified by the k-means clustering algorithm (see
Methods), and 11 clusters were found (Fig. 4A).

The simulated network's spontaneous activity was changed by tetanization (Fig. 4B). Some
types of barrages happened mostly in the 10-min pretetanization period, such as clusters 5, 9,
and 11, whereas different barrages happened in the posttetanization period, such as clusters 1,
3, 7, 8, and 10. Most of the clustered barrages ceased to occur for some minutes after
tetanization and reappeared later. For example, cluster 2 reappeared around t = 25 min, sooner
than cluster 4, which reappeared around t = 40 min. Some clusters were transient, such as
cluster 1 being highly concentrated around t = 30 min.

We studied the changes in synaptic weights that might underlie the differences in spontaneous
barraging activity before and after tetanization. The CW trajectory of the simulated synaptic
weights, shown in the “Long” experiment in Fig. 5B, was calculated and sampled at 2 Hz over
the entire 67 min simulation. The trajectory was divided into four periods (Fig. 4B).

Pretetanization
(P): from t = 0 min to t = 10 min, the CW trajectory remained within a localized area we termed
a “steady state.”

Tetanization
(T): from t = 10 min to t = 15 min, the CW was driven away from the steady state of period
P. No spontaneous barrages occurred during this period.

Posttetanization drifting
(D): from t = 15 min to t = 60 min, after the tetanization, the CW drifted for about 45 min
without external stimulation. As shown in Fig. 4B, different types of spontaneous barrages
gradually appeared and disappeared during this period.

Posttetanization steady-state
(S): after t = 60 min, the CW arrived at a new steady state where it remained.

We compared the effects of 10 s and 5 min tetanizations by investigating the CW trajectories
between the “Short” and the “Long” experiments (Fig. 5A,B), and the “Short+Background”
and the “Long+Background” experiments (Fig. 5C,D). All drove the CW away from the
pretetanization steady state. The CW distance between the centroid of the pretetanization
steady state and the tetanization end point was used to quantify the effects of tetanization in
changing network synaptic weights. This distance and standard error of the mean (SEM) (n =
5 simulated networks) was 79.5 ± 6.0 μm in the “Long” experiments, significantly greater than
28.9 ± 2.5 μm in the “Short” experiments (p < 10−4, two-tailed t-test); and was 75.7 ± 5.2 μm
in the “Long+Background” experiments, significantly greater than 32.8 ± 2.8 μm in the “Short
+Background” experiments (p < 10−4) (Fig. 6A).

In previous studies to model the restoration of sensory input to our living in vitro networks,
we applied multisite background stimulation. This decreased or eliminated the occurrence of
spontaneous barrages (Madhavan et al., 2003; Wagenaar et al., 2003, 2005). Here, using our
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simulated networks, we investigated the influences of simulated random multisite background
stimulation on the short and long tetanizations by quantifying the differences in CW trajectories
with or without random low-frequency 64-electrode stimulation (averaging 1 Hz) (Fig. 5). With
background stimulation, the CW did not move back to the pretetanization steady state even
after only 10 s of tetanization, unlike without background (Fig. 5C). The CW distance between
the centroids of pre- and posttetanization steady states was used to quantify the difference
between the “Short” and the “Short+Background.” The distance was 7.17 ± 1.01 μm (n = 5
simulated networks) in the “Short” experiments, much shorter than 56.2 ± 10.5 μm in the “Short
+Background” experiments (p < 0.001) (Fig. 6B).

In addition to preventing “turning-back” of the CW after a 10 s tetanization, background
stimulation also reduced “drifting-away” of the CW after a 5 min tetanization. CW trajectories
of a “Long” and “Long+Background” experiment from the same network are shown in Fig. 5.
With random multisite background stimulation, the CW stayed near its value immediately after
tetanization (Fig. 5D). Without random multisite background stimulation, the CW drifted and
came to rest at a new steady state (Fig. 5B). The CW distance between the centroid of the
posttetanization steady state and the turn-off point of the tetanization was used to quantify the
drifting of the CW after the tetanization. This distance was 77.6 ± 15.2 μm (n = 5 simulated
networks) in the “Long” experiments, much longer than 24.0 ± 7.1 μm in the “Long
+Background” experiments (p < 0.01) (Fig. 6B).

Although, background stimulation stabilized the network against large CW drift, small CW
variations in the pre- and posttetanization steady states were higher with the background
stimulation than those without background stimulation (Fig. 5). The mean distance of
individual CWs in the pretetanization steady state from their centroids was used to quantify
the spread of the CW. The spread was 2.9 ± 0.2 μm (n = 5 simulated networks) without
background stimulation, smaller than 9.8 ± 0.8 μm with background stimulation (p < 10−4).
This spread was compared with the change of CW caused by tetanization, which was quantified
by the CW distance between the centroid of the pretetanization steady state and the tetanization
end point. Without background stimulation, the spread was significantly smaller than the short
tetanization-induced change (p < 10−6) and significantly smaller than long tetanization-induced
change (p < 10−6). With background stimulation, the spread was significantly smaller than the
short tetanization-induced change (p < 10−4) and also significantly smaller than long
tetanization-induced change (p < 10−5) (Fig. 6A).

Discussion
Effects of Random Multisite Background Stimulation in Simulated and Living Networks

Random background stimulation helped maintain the stability of network synaptic weights
after tetanization in simulated networks. The CW plots (Fig. 5) showed that the network
synaptic weights tend toward a localized set of values, and that tetanization moves the network
synaptic weights away. In the absence of background stimulation, the CW returned to its
previous locus after a short tetanization, suggesting this locus served as an attractor. After a
long tetanization, the CW drifted for some time before settling on a new attractor, suggesting
the tetanization effect is not stable. With background stimulation, a short tetanization can
change the network synaptic weights (Figs. 5 and 6); to use a mechanical analogy, the ‘elastic’
change becomes a ‘plastic’ change. A long tetanization will drive the network to a new locus,
where it remains without drifting. The observation of CW attractors suggests that a form of
self-organization or homeostasis exists in the interaction of synaptic weights and network
activity; however, much remains to be studied about the mechanisms of this interplay.

We hypothesized that the network synaptic weights drifted after a tetanization because of the
ongoing spontaneous activity, consisting of mostly spontaneous barrages (Fig. 4B).
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Spontaneous activity and network synaptic weights interacted with each other until reaching
a stationary set of patterns in CA space and an attractor in CW space. With random background
stimulation, spontaneous activity was reduced, and so the network synaptic weights were
mainly affected by stimulus-evoked activity. Since background stimulation, and consequently
the evoked activity, was random spatially and temporally, these stimuli had an unbiased
randomizing effect on changing network synaptic weights. Thus, the size of CW attractors was
greater with the background stimulation than without it (Figs. 5 and 6). In summary, whereas
the background stimulation stabilized the network synaptic weights by preventing the
directional drift caused by influences of transient spontaneous barrages after tetanization, the
randomizing effect also increased the variation of network synaptic weights isotropically.

In both simulated networks and living cultured networks, spontaneous barrages were reduced
by random background stimulation and stimulus-evoked activity became dominant. Random
multisite background stimulation was applied to living neural networks also, and neural activity
was recorded and compared with that of the simulated neural network (Fig. 7). In a typical 1-
min recording, the ratio of the number of evoked barrages vs spontaneous barrages was 41 : 1
in the living network compared with 42 : 3 in the simulated network. Moreover, the spontaneous
barrage rate was reduced from 0.70 Hz (Fig. 3A) to 0.017 Hz (1 barrage in 1 min) in the living
network and was reduced from 0.73 Hz (Fig. 3B) to 0.05 Hz (3 barrages in 1 min) in the
simulated network.

Stability in Other Systems
Long-term stability of spontaneous activity patterns was found in cortical slice cultures (Beggs
and Plenz, 2004; Ikegaya et al., 2004), suggesting these recurrent patterns could be used by
cortical circuits to store information for memories. Our simulation results support this
hypothesis by showing that for an attractor in CW space, a finite set of clustered CA trajectories
recurs. The results also show that tetanizations changed the network to different attractors, and
random background stimulation eliminated CW drift after a tetanization. This suggests the
tetanization altered the contents of the memory stored in the network, and that the random
background stimulation reduced spontaneous transients, allowing a greater control over
network plasticity. Preliminary results of tetanization on living networks support this view
(Madhavan et al., 2005).

Control of Network Synaptic Weights and Implementation in Hybrots
The use of MEAs in hybrots provides a model system to simultaneously study behavior and
detailed neuronal function, including plasticity underlying adaptation or learning. In our
experiments, tetanus was used to induce plasticity. By adding background stimulation, the
plasticity remained while the stability needed for memory was provided.

We created motor mappings to control the behavior of a robot based on the activity in a real
neuronal network, and sensory mappings to stimulate the network based on the sensory input
from a hybrot (Bakkum et al., 2004). The first step to demonstrate learning behavior, begun in
this simulated modeling study, is to search for the relationship between the network synaptic
weights and the network spatio-temporal activity patterns. We demonstrated that tetanization
drives the network from one attractor to another. This is promising for hybrots, because if we
can induce the network synaptic weights to change, we can show the behavior of a robot
changing from one mode to another mode to demonstrate adaptive learning.

A potential mapping for hybrot control is to use the CA trajectory of the responses to the random
background stimulation as motor commands (Fig. 8). Different forms of tetanization have
different effects on network synaptic weights (such as long vs short tetanization, Figs. 5 and
6) and can serve as the feedback to a living network representing different sensory inputs. In
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this case, network synaptic weights change during each tetanization and the changes are
stabilized by continuous random background stimulation. Therefore, the behavior pattern of
the hybrot would change after each sensory feedback and remain steady until the next feedback.
In this study, we used the CW trajectories and the occurrence of spontaneous barrages with
different CA trajectories to illustrate network plasticity in model networks. However, these
two quantities cannot be easily applied in living networks. First, the synaptic weights of a living
culture are not directly measurable by the extracellular electrodes of our MEAs. Second,
background stimulation reduces the frequency of spontaneous barrages in living networks;
thus, not enough spontaneous barrages occur to reliably cluster their CA trajectories or to
provide instant reaction for generating motor commands. Thus, we expect the responses to
background stimuli to be the better parameter for hybrot control.

CA and CW Trajectories
Finding structure in the complexity of multiple time-varying neural signals is difficult and
likely requires the creation of new mathematical tools (Pesaran et al., 2002; Baruchi and Ben-
Jacob, 2004; Beggs and Plenz, 2004; Brown et al., 2004). The CA and the CW were designed
to map multiple spatio-temporal signals into a more comprehensible form whereas retaining
enough detail to discriminate network states. The CA and CW trajectories give summary
statistics about the network-wide properties as opposed to statistics on individual neurons. Note
that the shapes of the trajectories are independent of the selection of the trajectory origin or of
the spatial center of the network since they are linear summations of neural locations.

Most current methods for neural spike train data analysis, such as the cross-correlogram, cross
intensity function, and joint peri-stimulus time histogram, yield information only about
associations between pairs of neurons (Brown et al., 2004). To give information on the whole
network, these methods would require large computational power to go through every possible
pair of neurons and require further statistics to compare more than two recordings. Although,
a CA trajectory cannot provide detailed information about individual neurons, it has the
advantage of depicting the spatio-temporal dynamics of the whole network.

Conclusion
Using artificial neural networks to control robots is an active area of research and, in addition
to directing studies in living neural networks, holds the potential for many promising products
(Brooks, 1999; Krichmar and Edelman, 2002; Schaal et al., 2004). Most work in AI and robotic
systems faces limitations in the ability to adapt to novel situations in real-time. By contrast, it
is clear that biological neural systems excel at this. Much can be learned from the activity,
morphology, and connectivity of biological neural networks to inform the design of future
artificial networks. If future research on living networks, demonstrate that directed functional
changes can be obtained by stimulating the network, then we expect to find corresponding
morphological changes. Imaging neuronal networks using time-lapse multiphoton microscopy
(Potter, 2005; Potter et al., 2001) is compatible with many-neuron electrophysiology. We are
building a dedicated 2-photon/MEA microscope (Rambani et al., 2005). The “brain” of the
hybrot system, unlike an animal's brain, holds still during behavior, and can be imaged in its
entirety (Bakkum et al., 2004).

We have only begun to explore the effects of multisite background stimulation on networks
(Wagenaar et al., 2005). We are applying a synergy of modeling simple networks, and multiunit
experimentation on substantially more complex living ones. Simulated network studies help
suggest new experiments for studying learning in vitro, while the experimentation helps us
come up with better-simulated models for the network-level properties of neural circuits. By
embodying in vitro networks with hybrots in closed-loop systems, we can more easily observe
the cellular and network mechanisms of learning while it happens than with in vivo models,
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and ensure that any changes induced by the stimuli have functional consequences on hybrot
behavior.
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Fig. 1.
Hybrot, the embodied hybrid neural-robotic system: A hybrot consists of a cultured neuronal
network, a robot, and a feedback loop. Network activity recorded from the cultured network
is transferred into the robot's motor commands. This transfer function is the gray circle marked
with “N→M.” The interaction between the robot and its environment is detected by the robot's
sensors and transferred into an electrical stimulation fed back to the cultured network. This
transfer function is the gray circle marked with “S→E.” The feedback affects the network
activity and thus future motor commands. The MEA is capable of both recording and
stimulating the cultured network at multiple locations simultaneously.
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Fig. 2.
Simulated network structure and positions of stimulation electrodes: Simulated neural network
and stimulation electrodes were constructed to mimic the dissociated cultured network and
MEA setup. (A) Structure of the simulated model network. One thousand LIF neurons are
located in a 3 mm × 3 mm region, the circles indicate the neurons, the light-gray lines represent
the excitatory synapses and the dark-gray lines represent the inhibitory synapses. All neurons
are shown but only 15% of the synaptic connections are shown for clarity. Thick black lines
emphasize the connections from a particular randomly selected neuron. It had both long-range
and local connections. (B) The locations of 64-electrodes are shown in circles, and marked
with column-row numbers (tetanization channels 33 and 66 are emphasized). The connections
of the neuron highlighted in (A) are depicted in light gray.
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Fig. 3.
Comparison of the network activities from experimental data and simulation: Simulated
spontaneous activity and evoked responses resemble the experimentally recorded data. One
minute of spontaneous activity was recorded from a living network by a 60-channel MEA
(A), and in simulation (B) for comparison. The upper panels are spike raster plots. The lower
panels are firing rate histograms, with bin sizes of 100 ms Also, 50 trials of evoked responses
recorded by one electrode in a living network (C), and in simulation (D) are shown for
comparison. The upper panels are spike raster plots. The lower panels are firing rate histograms,
with the bin size of 0.1 ms. The timings of stimuli for each trial were aligned at time zero. In
the simulation, each electrode recorded the activities occurring within 100 μm.

Chao et al. Page 15

Neuroinformatics. Author manuscript; available in PMC 2008 November 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
CA trajectory of spontaneous barrages in a “Long” experiment in one network: Different kinds
of spontaneous barrages occurred in different periods. (A) Different classes of CA trajectories
of spontaneous barrages. A total of 2387 barrages were detected. The CA trajectories of these
barrages were classified by the k-means clustering algorithm, and eleven classes were found.
The CA trajectories for different clusters were plotted separately. The coordinate shown in the
lower-left corner represents the 3 mm × 3 mm area of the “dish”. The trajectories belonging
to the same cluster are overlaid together. The averaged trajectories of each cluster are shown
by a trace of circles, dark and large for the start of the trajectory, lighter and smaller toward
the end. (B) The occurrences of different types of spontaneous barrages. The x-axis represents
time in minutes, and the y-axis indicates the cluster index that corresponds to the index shown
in (A). The shading represents the frequency of occurrences of the spontaneous barrages
measured in every 10 s; the corresponding grayscale is shown at right. Notice that there is no
spontaneous activity during tetanization (from 10 to 15 min). Marked periods are:
P,Pretetanization;T,Tetanization;D,Posttetanization (drifting) and S,Posttetanization (steady)
(see Results and Fig. 5B).
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Fig. 5.
Comparison of CW trajectories from four experimental conditions on each of five networks:
Random multisite background stimulation maintained the network synaptic stability by
reducing the “turning-back” and “drifting-away” of the CW trajectories after 10 s and 5 min
tetanizations, respectively. CW trajectories, sampled at 2 Hz, are shown for one of the five
networks for the “Short” experiment (A), the “Long” experiment (B), the “Short+Background”
experiment (C) and the “Long+Background” experiment (D). The light-gray circles, mid-gray
triangles, dark-gray diamonds, and black squares represent the pretetanization period,
tetanization period, posttetanization drifting period (in A and B only) and posttetanization
steady period, respectively. The turn-off points of tetanization are marked with “X.” Notice
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that with the random background stimulation, the CW trajectory stayed near the point where
the short tetanization was turned off without turning back toward the pretetanization steady
state (compare A and C). For long tetanizations, the random multisite background stimulation
kept the CW trajectory near the point where the tetanization was turned off without drifting
away (compare B and D).
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Fig. 6.
Statistics of CW trajectories: Random background stimulation did not affect the amount of CW
change induced by tetanization, and had a stabilizing effect on CW trajectory after tetanization.
(A) The change of CW after tetanization was significantly greater than the spread of CW in
pretetanization period. The spread of CW without background stimulation was significantly
smaller than with background stimulation (marked,* n = 5 simulated networks, p < 10−4). This
spread was compared to the change of CW caused by tetanization (see Results). Without
background stimulation, the spread was significantly smaller than both the tetanization-induced
changes in the “Short” experiments (p < 10−6) and the “Long” experiments (p < 10−6). With
background stimulation, the spread was significantly smaller than both the tetanization-induced
changes in the “Short+Background” experiments (p < 10−4) and the “Long+Background”
experiments (p < 10−5). The CW change induced by long tetanization was greater than that
induced by short tetanization, both without background stimulation (p < 10−4) and with
background stimulation (p < 10−4). Vertical bars represent significant differences between
values (marked,* p < 10−4). (B) The CW distance between centroids of pre- and
posttetanization steady states was used to quantify “turning-back” of the CW trajectory after
10-s tetanization (Fig. 5A). With random background stimulation, the CW of the
Posttetanization steady state stayed significantly farther from the pretetanization steady state
after the short tetanization (marked,** p < 0.001). The CW distance between the centroid of
the posttetanization steady state and the turn-off point of the tetanization was used to quantify
the “drifting-away” of the CW after the 5-min tetanization (Fig. 5B). With random background
stimulation, the CW of the posttetanization steady state drifted significantly less after the long
tetanization than without (marked *, p < 0.01).
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Fig. 7.
Comparison of network activity with random background stimulation in living and simulated
networks: In the presence of background stimulation, the network activity consisted mostly of
evoked responses, both in living networks and simulated networks. (A) A 1-min recording
from a living network with background stimulation by 60-channel MEA is shown in a rasterplot
(upper panel, spikes recorded in the ith electrode were randomly spread out in the interval [i
− 0.5 i + 0.5] on the y-axis for clarity) and the corresponding firing rate histogram (lower panel,
bin size is 100 ms). (B) A 1-min simulation with background stimulation is shown as a raster
plot (upper panel) and the corresponding firing rate histogram (lower panel). The timings and
channels of applied stimuli are shown as black dots in the raster plots and on the x-axis in the
histograms. The ratio of the number of evoked barrages vs spontaneous barrages was 41:1 in
the living network compared to 42 : 3 in the simulated network. Moreover, the spontaneous
barrage rate was reduced from 0.70 Hz (Fig. 3A) to 0.017 Hz (1 barrage in 1 min) in the living
network and was reduced from 0.73 Hz (Fig. 3B) to 0.05 Hz (3 barrages in 1 min) in the
simulated network.
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Fig. 8.
A potential paradigm for hybrot control with random background stimulation and tetanization:
Two and a half command cycles are depicted above, separated by vertical dotted lines. Each
cycle consists of tetanus at two channels and continuous random background at all 60 channels.
The CA trajectories of the responses to the most recent background stimulus at each channel
in one cycle could be transformed into motor commands for a robot. The sensory feedback
from the robot could be transformed into different forms of tetanization in the next cycle (in
this figure, two different tetanizations are applied at two different pairs of electrodes). Based
on our model, we expect the network synaptic weights to change in different ways depending
on the sensory feedback since different tetanizations could have different effects. The
continuous random background stimulation is expected to stabilize the weight changes (a series
of hypothesized CW trajectories are shown in the bottom row). As a result, the behavior pattern
of the hybrot would change after each sensory feedback and remain steady until the next
feedback.
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