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1 Introduction

How does the nervous system encode sensory information? This question has been at the core

of neurscience ever since its conception in the early 1900’s. It still hasn’t been answered to any

satisfactory extent, but some promising insights have been gained, not least due to the recent joined

efforts between biologists and theorists in statistics and other fields. This paper relates some of

these efforts.

Before getting into details, this first section provides a very brief overview of some of the

techniques used traditionally to probe neuronal coding. A more in-depth treatment, with pointers

to recent literature is given by Buračas et al. in [1].

1.1 Variance of spike counts

Perhaps the simplest method to examine what external stimuli particular neurons code for, is to

measure their firing rates after presentation of various stimuli. One can then find which of the

stimuli presented yields the largest spike count in a given time window. Various statistical tests

are available1 to gauge the significance of any difference in the rates obtained.

Simplicity comes at a price though. Firstly, by looking at first order statistics (counts) only,

one immediately loses sight of any temporal structure. Secondly, since spike counting implicitly

presupposes that the firing is a Poisson process, it is generally necessary to have long samples or

to average over large number of trials in order to have acceptable standard errors on the counts.

A useful extension of this technique is to compute the covariance of spike counts from two neu-

rons, rather than relating the spike count from one neuron to exernal stimuli. The same limitations

apply, and choosing the width of time windos becomes a more tricky issue.

1.2 Temporal (cross-)correlation

The first step into gaining insight into the temporal structure of a process is usually obtaining

temporal correlograms. One can plot a neuron’s autocorrelation function, i.e. a histogram of its
1For an excellent introduction to biological applications of statistics, see [2].
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inter-spike intervals, or one can plot the cross-correlogram of two neurons, i.e. the distribution of

intervals between a spike on neuron A and a spike on neuron B.

This technique quickly tells you whether the behaviour of the two neurons is correlated, and in

many cases whether there is a causal relationship between their firings. Again, the choice of time

bin width is crucial, and the technique only works if the relationship consists of directly induced

firing: if it is effectively a pattern from the first neuron that triggers a pattern in the second neuron,

this will not show up clearly in the cross-correlogram.

1.3 Mutual information between spike trains

The mutual information between two data streams is a completely general measure of their relat-

edness, which doesn’t rely on the coding mechanisms used by the two streams. The definition and

some of the mathematical properties of mutual information will be detailed in the next section.

The coding scheme independence makes mutual information well suited for studying relations

between pairs of neurons when one of the neurons is hypothesized to be far downstream from the

other, or for studying relations between a neuron’s firing pattern and a stream of external stimuli

with complex structure.

One important limitation of the concept is that it does not deal with time delays between the

two data streams. When it is suspected that one neuron may react to another neuron or to a stimulus

after a fixed delay, it is possible to manually input this delay into the algorithm, or to determine

the delay by maximizing the mutual information with respect to the delay. If the delay is variable,

the method breaks down, except in simplifying cases.

2 Some information theory

This section will present a mathematical definition of mutual information and some related con-

cepts necessary to understand the definition. This presentation aims for simplicity rather than full

mathematical formality. Most of the following material is closely based upon an introductory text

on information theory aimed at applications in artificial neuron network research [3].

Formally, information theory considers data streams consisting of long sequences of messages.

Each message is a word x taken from a dictionary X , with a probability px. It is not required that

subsequent messages are wholly independent, as long as in the long run the probabilities px are

adhered to.
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2.1 Entropy

The entropy for a data stream (or more strictly: for a dictionary) is defined as:

H
�
X ����� ∑

x
px log2 px �

Apart from a numerical factor, this definition coincides with the definition of entropy in statistical

physics.

In the limit of infinitely long streams, the entropy becomes equal to the average length (in

bits) of the shortest possible decodable code that could encode the messages in the stream. Thus,

entropy can be viewed as a measure of the uncompressibility of a data stream. Entropy is not a

very useful measure of the information contents of a stream, since incompressibility, and hence

entropy, is highest for a totally random stream.

The following are some key properties of the entropy:

1. For any dictionary X, the entropy is non-negative: H
�
X ��� 0, with equality iff there there is

only one word in X .

2. An upper bound on entropy is given by H
�
X �
	 log2 N, with equality iff all words have

equal probability.

3. The entropy of a derived data stream Y , whose messages y are obtained from the data stream

X as y � f
�
x � for some (deterministic) function f cannot be higher than the original entropy:

H
�
f
�
X ����	 H

�
X � , with equality iff f is injective (invertible).

One very important issue when computing the entropy of a stream, is to decide what the length of

the individual messages is1. For example, with spike trains as a data stream, one could pick the

individual interspike intervals as messages, or multiplets of such intervals. The resulting entropy

will be different. This is a strong limitation on the claim of generality made above. In effect, some

external judgement has to be applied to decide what constitutes a message, although in the next

section it will be shown that there may be algorithmic solutions to this problem too.

2.2 Mutual information

Much more interesting than the incompressibility of a data stream, is the amount of information

this stream supplies about another stream. This quantity is measured by the mutual information,
1Information theory is not an experimental science, warn Rieke et al. ([4] p.148): just as there is no direct method

to measure the entropy of a gas, there is no direct method to measure the entropy of a real datastream — the only

instance one can obtain the exact entropy is when the full probability distribution of messages in the stream is known,

which obviously requires that one knows what constitutes a message. In physics, entropy change can be measured by

observing heat flow, but there is no known analogue to heat flow in information theory.
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defined for two streams X and Y by

I
�
X : Y � � H

�
X � � H

�
Y � � H

�
X � Y � �

Here H
�
X � and H

�
Y � are the entropies of the individual stream, and H

�
X � Y � is the entropy of the

joint stream defined as H
�
X � Y � � � ∑x � y px � y log2 px � y, where px � y is the probability of randomly

picking the pair
�
x � y � when picking x from X and y from Y . Explicitly, the information can be

written as I
�
X : Y � � ∑x � y px py log px � y

px py
.

If the above seems a strange definition, consider the following analogy: suppose two people

standing close together look at the world through monoculars. Each person will see a small area

of the environment: one sees a circle H
�
X � , the other sees a circle H

�
Y � . In general, these circles

may overlap. If that is the case, then Xanthippe can predict a part I
�
X : Y � of what Yo-anne will

see.

H(X) H(Y)

I(X:Y)

H(X,Y)

Some important properties of the mutual information are:

1. Mutual information is non-negative: I
�
X � Y ��� 0, with equality iff the distributions X and Y

are independent.

2. The mutual information I
�
X : Y � cannot exceed the entropy H

�
X � or H

�
Y � .

3. The mutual information between a derived data stream fn
�
X � and Y cannot exceed the mu-

tual information between X and Y :

I
�
fη
�
X � : Y ��	 I

�
X : Y ���

where fη is any deterministic or stochastic function.
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This last property states the intuitive truth that if you tell me a story about a friend, and I relate

that story to another friend, the story I tell will contain less (accurate) information about your

friend then your story did. This property is very useful, because it states that by making simplified

assumptions about what quantity actually carries the information in a spike train, you can never

overestimate the mutual information, and similarly, if you make simplified assumptions as to what

your stimulus is like, you will derive an underestimate of the mutual information.

3 The use of mutual information in neurobiology

3.1 Foundations

Before using information theory in neurobiology, we have to ascertain that it applies:

Supposition: Organisms care about how much information passes through a channel.

The value of this ‘optimal use of resources’ argument can be hotly debated. To me it seems that

one has to make some assumptions in order to get anywhere, and information flow seems a more

relevant quantity (being a general property of data processing systems) than spike count (which is

an accident of the particular hardware). I will return to this question in a later section.

3.2 Quantizing the neuronal data stream

Information theory grew out of an engineering problem: how to efficiently encode a given set of

messages into a channel with limited capabilities. In neurobiology one does not generally know

what messages are being transmitted by a neuron. Instead, one has to decide heuristally what

amount of data to treat as a message for computing information theoretical quantities. This makes

estimating mutual information a bit of an art. In practice researchers often associate words to spike

trains of length on the order of 100 ms, and split these words into ‘letters’ corresponding to the

number of spikes in subtrains of length around 20 ms. Both arguments of biological plausibility

and requirements of statistics are used to arrive at these numbers. They can be varied at will, as

long one makes sure that enough statistics remain to closely approximate the probability distribu-

tion in the reduced space of letters and words (as opposed to the full space of possible unquantized

spike trains). If these constraints are satisfied, properties 3 of the entropy and the mutual infor-

mation guarantee that the number obtained from these calculations is a lower bound, and one can

safely adjust the parameters such as to obtain the highest possible lower bound1.
1Even in the case of undersampled distributions some useful bounds can be obtained [5].
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3.3 Components of entropy

The choices to be made for the information theoretical analysis of spike data do not end here. One

has to choose what is going to be considered signal and what is noise. The entropy of a spike train

is the sum of four components:

1. Mutual information with feature of stimulus under investigation

2. Mutual information with other features of stimulus

3. Mutual information with local events (not stimulus related)

4. Intrinsic noise entropy (e.g. limitations of synaptic efficacy)

Component 1 will always be viewed as a signal, and component 4 is always noise, but components

2 and 3 can be classified as either.

3.4 Estimators of mutual information

As there is no way to directly measure mutual information in experimental situations, several

estimator algorithms have been devised. Here, I introduce two, which are used in experiments

discussed in the next section.

3.4.1 Linear signal reconstruction à la Bialek

The first method [4] is based on the observation that the information between a signal and a spike

train can never be less than the information between a signal and a reconstruction of that signal

solely based on the spike train. From an observed spike train

x
�
t � � ∑

i

δ
�
t � ti ���

where ti are the spike arrival times, the method tries to estimate the signal s
�
t � via a Wiener kernel

K1:

sest
�
t ��� ∑

i

K1
�
t � ti � �

This kernel is found by minimizing some error functional such as:

E � s;sest � � ���
dt � s � t � � sest

�
t ��� 2 �

�

where the average is over the set of all stimuli presented.

A considerable advantage of this method is that it solves the problem of time delay estimation

naturally, and that it doesn’t depend on choosing timewindows and bins at the level of the spike

train. The disadvantage is that kernel estimation is rather involved.
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SKRvSB98 fig 3 here

Figure 1: Total and noise en-

tropy as estimated using differ-

ent time windows (window size

increases to the left). Filled

squares are obtained from a

method estimating finite data set

corrections (which are found to

be � 10 � 3), open squares repre-

sent the Ma bound.

3.4.2 Direct method à la Strong et al.

An alternative method is pioneered in [6]. In this method the information is computed as the

difference between an estimate of the total entropy in the spike train and an estimate of the ‘noise’

entropy in the spike train:

I
�
X : S � � H

�
X � � H

�
X

�
S � � : Htotal

�
X � � Hnoise

�
X ���

where X represents the spike train codes at a particular point in time, and S represents the stimilus.

Note that the rightmost member of this equation does not refer to the stimulus explicitly, so again

time delay problems are resolved naturally. The solution is less clean though than for the recon-

struction method: it requires that a stimulus of length (much) longer than the delay be presented

multiple times. Strong et al. [6] describe a method to estimate the entropy and information per unit

time in the limit of infinite time windows based on calculating total and noise entropies Htotal
�
X �

and Hnoise
�
X � for a series of finite windows (Figure 1). The method assumes that there are no

(detailed) long time correlations within spike trains.

The stimuli used in this study were pseudo random time series of vertical gratings displayed

on an oscilloscope, varying at a time scale of 500 µs, much less than the typical integration time

of the neural system under consideration. The stimulus pattern repeated every 33 s, and the total

length of the experiment was 100 cycles [7].
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4 Stimulus representation in primate visual cortex

In a famous series of articles [8, 9, 10], Richmond et al. investigated how visual stimuli are repre-

sented in neuronal firing patterns in monkey inferior temporal cortex. They used carefully selected

stimuli with fixed overall intensity which are orthogonal in bitmap space. These stimuli were

shown for 800 ms, during and after which neuronal response was recorded. They find that the re-

sponse to a particular stimulus is highly consistent across repeated exposure. The time structure of

the responses is categorized using principal component analysis [11]. For all neurons investigated

most of the variance of the responses was accounted for by the first few principal components: the

number of significant components was typically 2, 3 or 4.

Finally, the authors compute the information between the spike train and the stimulus in two

ways: first by binning the spike counts, and secondly by binning PCA coefficients. They find

that individual cells transmit a relatively low amount of information about each stimulus: Ic �
� 426 � � 040 for count based calculations, I3 � � 883 � � 054 for PCA (first 3 components only)

based calculations. Since I3 is much higher than Ic, the authors conclude that the temporal patterns

of the responses carry information beyond what is encoded simply in the count. Furthermore, the

coefficients of the PCs were uncorrelated, and considering more than one component made for a

larger estimate of I: I1 � � 403 � � 039; I2 � � 642 � � 045. Thus the authors conclude that the neurons

encode information about more than one aspect of the stimuli.

Note that the information is by no means high enough for single cells to identify the stimulus.

Even with throughput as high as I3, an ensemble of at least some 7 or 8 neurons would be needed

to identify a stimulus. The authors do not however mention information rates obtained for such

ensembles of cells.

The amount of per-stimulus information (Box 1) varied considerably across stimuli. This indi-

cates that the response to some stimuli is more stable than for others. The authors do not elaborate

this point. The conceptual difficulty associated with I
�
R : s � is well illustrated by comparing this

per-stimulus information with the average spike count C
�
s � observed after presentation of the same

stimulus (Figure 2). The authors claim that these numbers are essentially uncorrelated, but it is

striking that the highest information appears to be transferred about the stimulus that causes the

lowest firing rate. This can be explained as follows: when the average spike count is low in a

set of spike trains R � , the entropy in that set is also low if the trains obey anything resembling a

modulated Poisson process. Since I
�
R : s � is computed by subtracting the entropy in the set of

spike trains observed after presenting stimulus s from the total entropy, I
�
R : s � will be artificially

high in this situation.
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Box 1. Information per stimulus
An alternative way to write the mutual information between two data streams is

I � X : Y ��� H � X ��� H � X �Y ���

the difference between the entropy in X and the entropy in X after Y has been fixed. (H � X �Y � is simply

defined as H � X �Y �	� H � X � Y �
� H � Y � .). In this form, some authors try to disentangle the amount of

information in X about a given message from Y : we can write

I � X : Y ��� H � X ��� ∑
y

pyH � X � y ��� ∑ py �H � X ��� H � X � y ���� ∑
y

py I � X : y ���

where H � X � y �	� ∑x px � y log2 px � y. They then use I � R : s � to define the stimulus s that optimally stim-

ulates the neuron R. The meaning of I � R : s � is not quite obvious though. It would be much safer

conceptually to only consider optimally differentiable stimulus pairs, i.e. to use simple stimulus sets

P � S ����� p � s0 ����� 5 � p � s1 �	��� 5 � , and find the set S for which I � R : S � is maximal.

OR4 and 5a here

Figure 2: Single stimulus information versus observed spike counts. (a) Information rate for particular

stimuli (averaged over all presentations of that stimulus), and spike count associated with that stimulus. (b)

Scatter plot of the same data, showing supposed lack of correlation.

4.1 Constant vs rapidly changing motion stimuli

Richmond et al. acknowledge that their method does not yield insight into the role of temporal

modulation of the stimuli. This hiatus wasn’t filled until a few years later. In [12], Buračas et al.

present an awake monkey both with statically moving patterns and with patterns that are varied on

timescales on the order of 30 to 300 ms and observe the response from neurons in middle temporal

cortex.

They show that for static stimuli essentially all information is transmitted in the first few hun-

dred milliseconds: even though the cells continues to fire during the entire stimulus presentation,
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BZDA fig 3 here

Figure 3: Mutual information between spike train in MT cortex and constant motion stimulus: (a) Cumu-

lative, (b) Per unit time. The cell cannot distinguish fully between a set of eight stimuli (solid lines), but can

essentially perfectly distinguish a set of two stimuli (dotted lines). For both stimulus sets, most information

is transferred in the first 200 ms post stimulation.

considering the entire fire pattern barely yields more information about the stimulus (Figure 3).

This clearly makes biological sense, as typical behavioral reaction times to such simple stimuli

are on the order of a few hundred milliseconds. The amount of information transmitted about a

typical stimilus is similar to the numbers found in [10]: little more than one bit per presentation.

Thus it might look as if the information rate (in bits per second) of these cells is very small.

On presentation of rapidly changing stimuli, the situation is rather different. The cells can

still recognize individual stimuli with the same precision as when those stimuli are presented

for a much longer time. Therefore the information rate is much higher for these stimuli. Thus

the authors argue that the standard practice of using prolonged stimuli may lead to significant

underestimation of the capapabilities of neuronal systems1.

4.2 Timing precision

Buračas et al. show that the high amount of information transferred about quickly varying stim-

uli is not due to an improved recognition percentage of stimuli, or in reduced inter-presentation

variation: for both constant motion and rapidly changing stimuli, the resulting spike trains are

well modeled by a modulated Poisson process2 . Instead, the higher information transfer should be

attributed to the high timing precision with which the stimuli are detected (Figure 4). Quantita-
1It should be noted that stationary stimuli are mainly used because they are relatively easy to generate and they yield

spike trains that are easier to analyse by spike count statistics. Researchers generally agree that more rapidly varying

stimuli would be preferable in principle, as they correspond more closely to natural system operation.
2The authors are not very specific about the meaning of a Poisson process modulated at a rate close to the mean

firing rate.
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BZDA fig 1 and 4b here

Figure 4: Response to a constant motion stimulus (left) and a rapidly changing stimulus (right). The top

panels show firing rates, while the bottom panels show spike trains for individual trials. The second trace

in the top right panel shows the stimulus: high indicates motion in direction of preference [highest induced

firing rate], low in opposite direction.

tively, the timing precision of the first spike after a stimulus transition to preferred direction varied

between 2 ms and 10 ms for different cells.

Obviously, showing constant stimuli hardly probes such precision. In fact, no time locking

appears after the first 100 ms for constant motion stimulation.

4.3 Stimulus reconstruction vs Strong’s direct method

Buračas et al. use both information estimators introduced in section 3.4. They find that the direct

method yields a consistently higher number for the mutual information (Figure 5), a fact they at-

tribute to the reconstruction method only measuring the information between the spike train and

the characteristics of the stimulus under explicit control, while the direct method considers even

the subtle unintentional differences. The authors argue that this shows that a neuron may encode

more info about a stimulus than just the parameter you think you change. This conclusion is not at

all obvious. Firstly, there is no a priori reason why the reconstruction method could not reconstruct

such unintentional features, and secondly both methods are lower bound estimators, and it is dan-

gerous to make inferences about the relative sizes of the quantities these estimators approximate

from the relative sizes of the estimates. Additionally, inter cell variability of information rates was

considerable.
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BZDA fig 6abc here

Figure 5: Information rates as estimated by reconstruction and direct methods. (a) Raw data, lines connect

data for individual cells. (b) Information per spike, showing that far more information is transmitted about

precise timing than about exact simulus direction. (c) Total information transferred during stimuli lasting

1 s.

4.3.1 Earlier stages in visual processing

Clearly, high timing precision in MT cortex would be impossible without hardware support from

earlier visual centres. Indeed, high timing precision has been reported in several such centres.

For example, Berry et al. studied response in retinal ganglion to rapidly changing random noise

patterns [13]. Their experiments were performed on dissociated retina with very similar results

from rabbit and larval salamander retina, indicating a high degree of generality. The stimulus

consisted of uniform intensity light modulated by gaussian noise at 30 ms. Typically, the same

20 s long stimulus segments was presented 100 times, although the authors also used much longer

segments and even random checkerboard stimuli.

They find that ganglion cells in both species react specifically to certain features of the random

noise input, such as sudden increases or decreases of illumination. For rapidly changing stimuli,

most cells did not sustain a background firing rate. Instead, they fired with very high timing

precision at particular moments in the stimulus segment (Figure 6).

The timing precision was typically better than 10 ms for the salamander cells, and better than

20 ms for the rabbit cells. Salamander cells exhibited quiet periods (firing rate less than 5% of

maximum) that spanned over 90% of the recording time. Quiet periods in rabbit cells comprised

about 75% of time. When the cells did spike, the variability in spike count was much less then

expected for a Poission process (Figure 7). The authors calculate that upto six times as much

information is carried by the timing than by the spike count of the responses.

Very interestingly, the timing precision deteriorated with the square root of stimulus contrast

over a very wide range, as did the spike count precision1 , while the fraction of quiet periods

barely changed except for very low contrast (4% or less). The authors thus hypothesize that the

background firing rates observed by other experimenters when showing long constant luminosity

stimuli, may be due to the retina adjusting to extreme low contrast situations. The background
1Poisson level variability was obtained at about 5% contrast.
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BWM97 fig 1 here

Figure 6: Stimulus segment

(a), and responses (b) of sev-

eral cells (S1, S2: salamander,

R1, R2: rabbit). Spike trains

from S1 and R2 for twenty

trials each are shown on the

right.

BWM97 fig 2 here

Figure 7: Timing variability (a) and spike count variability (b) for a typical salamander ganglion cell. The

dotted line in (b) shows the Poisson relation, while the solid lines indicate limits imposed by counts being

integers.

firing would then be caused by amplification of random events in upstream cells. They suggest

that the high precision sector of the behaviour may be more natural, and that precisely timed

events consisting of a few spikes only rather than modulated Poisson coding could be the basis

of information processing in the retina and across much of the visual and other sensory systems.

Suggestions of high timing precision have a long history in the auditory system, where source

localization crucially depends on such precision. More recently, recurrence of fixed firing patterns

has been studied in other brain areas ([14] and several papers by M. Abeles et al.).
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5 Discussion

5.1 The relevance of information theory to neurobiology

A system where flow of information is optimized should be highly favoured by evolutionary pres-

sure, as maintaining neurons is energetically very expensive and optimal use of resources for

decision taking can often be a matter of life or death. This argument is elaborated in [15]. Strong

et al. [6] cite a lecture by Atick [16] also advancing this point of view, but I haven’t been able to

verify that source.

5.2 What is ‘optimal’ stimulation?

Traditionally, optimal stimulation has been defined as the stimulus that generates the highest spike

count1. In view of the fact that studies such as [13] show that spike count isn’t always the only,

or even the most important parameter in neuronal response, alternative definitions seem to be

required. One alternative that has been suggested is to use the stimulus for which the transferred

information is highest. These suggestions tend to propose I
�
R : s � (Box 1) as the fundamental

quantity. However, this quantity has uncertain conceptual foundations. A better approach would

be to discard the notion of optimal stimuli in favour of optimal stimulus sets, defined as the set S

of stimuli for which the information I
�
R : S � is largest for a particular neuron. To my knowledge,

this approach has not been used to date.
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