
CSchem

Electronic circuit layout for scientists and other part-time electrical engineers

Daniel A. Wagenaar

Copyright (c) 2018–2019



Copyright (C) 2018–2019 Daniel A. Wagenaar

“CSchem” is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses.

2



Chapter 1

Introduction

This document describes the installation and usage of “CSchem,” a (hopefully) easy-
to-use program for drawing electronic circuit diagrams written by Daniel Wagenaar.
A companion program, “CPCB,” is provided for instantiating circuits on a PCB. This
program is documented separately.

1.1 Why use CSchem?

There are any number of software packages and online options available that allow
you to draw circuit diagrams. So why should you choose CSchem? CSchem is for you
if:

• You like your circuit diagrams to look ready for publication straight from design;

• You like concentrating on the principles of your circuit while drawing the design
(and leave the specific choices of components until the next day);

• You like to have quick access to the most commonly used symbols;

• You either don’t need more uncommon symbols or are willing to draw them in
an SVG editor;

• You like the companion program CPCB for laying out PCBs.

On the other hand, CSchem may not be for you if:

• You need to draw very large circuits that span multiple sheets;

• You need to specify lots of parameters with your components for an automated
layout workflow. (CSchem will allow you to specify component values or part
numbers, but does not have specific fields for vendors, packaging information,
etc.)

3



V+

1

V–

3

4

2

A1

MCP4006
V+

V–

/EN

1

2

3

S1

MAX4619

S1.1

S1.2

S1.3

A1.1

A1.2

A1.3

A1.4

+5 V

R1 100 kΩ

C1

100 nF

Q1

FQP30N06L

R2 10 kΩ

Q2
R3 10 kΩ

Q3
R4 10 kΩ

KRed

KGrn

KBlu

ARed

AGrn

ABlu

+24 V

R5

0.68 Ω 2 W

R6

1 Ω 2 W

R7

1 Ω 2 W

R8

10 kΩ

+5 V

R9

10 kΩ

+5 V

R10

10 kΩ

+5 V

+5 V

+5 V

C2

1 μF

AIR

KIR

AGrn
KGrn

KIR
AIR

J1

R11

10 kΩ

R12

2.2 kΩ

Vin

Gnd

A
rduino U

N
O

D12

~ D11

~ D10

~ D9

D8

D7

~ D6

~ D5

D4

~ D3

D2

 (TX) D1

(RX) D0

D13

AI5

AI4

AI3

AI2

AI1

AI0

+5V+3.3V

RESET

A.REF

IOREF

Vx
Vy
Vz

U1

J2J3

J4

ARed
KRed

KBlu
ABlu

Heatsinks may be required for Q1, Q2, Q3.

Figure 1.1: A design for an Arduino-controlled triple linear LED driver as an example
of a circuit drawn with CSchem.

• You need to have access to a large library of predrawn components.

• You need a help desk on call.

1.1.1 A note on development

CSchem is being developed by an active research scientist. Practically, that means
two things: On the positive side, it means that I have a vested interest in fixing bugs
and improving CSchem, because I use it regularly. On the negative side, that means
that, by and large, new features are added only when I need them and bugs are fixed
when I have time. I certainly do welcome feature requests, but I cannot guarantee
that they will get implemented quickly or at all. (If you are in a hurry, I will consider
(paid) consultancy related to CSchem.) Finally, I definitely welcome contributions to
either the code or the documentation. I would be very happy if CSchem turned into a
community-supported open source project.

4



1.2 Features

CSchem circuit designs consist of a single, conceptually infinitely large sheet contain-
ing “elements” and “connections.”

Elements are things like resistors and opamps, connections are simple wires con-
necting between pins of elements. Each element has up to two pieces of text associated
with it: a circuit “reference” (e.g., “R1,” “J2,” or “A3.2”) and a “part/value” designation.
The “part/value” designation is free-form. You can use it for a resistor value (e.g., “10
kΩ” or “1 Ω 3 W”) or for a part number (e.g., “OPA2350”) or for an arbitrary label.

Connections are wires between (pins of) elements. Where wires meet, a “junction”
symbol is automatically inserted. Of course, wires can also cross without electrical
contact. Connections normally are constrained to run horizontally or vertically with
right-angle elbows.

The only graphical element that CSchem supports other than elements and con-
nections are arbitrary textual annotations that can be placed anywhere on the sheet.

At present, CSchem does not have explicit support for buses with multiple signal
wires or for splitting a drawing across multiple sheets.

1.3 Contacting the author

If you like CSchem or find fault with it, if you discover a bug or have a suggestion
for a new feature, if you are interested in improving this documentation or have a
patch to contribute to the code, I want to hear from you. My contact information is at
http://www.danielwagenaar.net. I very much look forward to hearing from you. I real-
ize that this guide is extremely terse, and I really do welcome questions, particularly
if they help me to improve CSchem or its documentation.

Pasadena, January 2019

5



Chapter 2

Installation

The latest version of the software can always be downloaded from
http://www.danielwagenaar.net/cschem.

2.1 Precompiled binaries

Binary packages for Linux, Windows and Mac OS X will be provided as time permits.
You can help focus my attention on binaries simply by expressing an interest.

2.2 Compiling the source

To compile the source, start from the provided “cschem.tar.gz” archive or check out the
git source at http://github.com/wagenadl/cschem. Compilation requires “Qt” version
5.6 or later.

2.2.1 Compiling on Linux or Mac OS

You will need a C++ compiler and “make”. On Ubuntu Linux, this is as simple as
“sudo apt-get install g++ make”. On Mac OS, you need the “Command Line tools for
XCode” from the Apple Developers’ web site1.

Open a terminal and “cd” to the root of the unpacked source archive. Then type
“make” and fetch a cup of tea. Then, either manually copy the file “build/cschem/cschem”
to some location on your PATH, or type “sudo make install” to install into “/usr/local/bin”.

2.2.2 Compiling on Windows

Details to follow. Again, feel free to ask!
1https://developer.apple.com/xcode.

6



Chapter 3

Using CSchem

CSchem has a deliberately sparse user interface that may take a little getting used to.
It is the author’s hope, however, that users will quickly get to appreciate the simplicity
of the system.

3.1 Placing elements

To place an element with a predefined symbol, simply drag the symbol from the side-
bar onto the design. To place custom elements, drag in their SVG file from a Filer
window.1 (For more on custom elements, see section 4.3.) Elements can be moved
around simply by dragging the mouse. To delete an element, simply hover over it and
press “Delete.”

3.2 Placing connections

Connections can be placed starting at pins of elements simply by dragging the mouse.
The connection will start in the direction of initial motion, so drag away from the el-
ement to avoid tangles. Click to fixate elbows in the connection; click on a pin of an
element or on another connection to complete the connection. Press “Return” to ter-
minate a partially drawn connection and leave it dangling. Press “Escape” or “Delete”
to abandon a partially drawn connection and remove it. To start drawing a new con-
nection starting from an existing connection, hold “Control” and hover over the old
connection. A transient marker will appear just as when you hover over a pin, and
you can drag out a new connection from that point.

Existing connections can be moved and reshaped simply by dragging the mouse.
While moving, connections will “snap” to nearby anchors such as pins. This normally

1E.g., Gnome Files in Linux, the Finder in Mac OS, or the File Explorer in Windows.

7



makes it easier to avoid spurious short zigzags. When snapping gets in your way,
simply hold “Control” to disable it.

Sometimes, connections and up with several unnecessary elbows. To simplify a
connection, double click on a segment that you would like to go away. This merges the
segment with the nearest segment that runs in the same direction, eliminating also
the intermediate short segment that runs in the perpendicular direction.

To delete a connection, simply hover over it and press “Delete.” This only deletes
the highlighted segment, but “Control”+“B” deletes all dangling connections, so it is
easy to remove the rest.

3.3 Selections and copy and paste operations

Elements can be selected either by clicking on them or by dragging an area around
them. To add to an existing selection, hold “Shift” while clicking or dragging. Con-
nections cannot be explicity selected; instead, connections between pairs of selected
elements are implicitly selected. Use “Control”+“C” to copy a selection to the clipboard
or “Control”+“X” to cut a selection to the clipboard. “Control”+“V” pastes the contents
of the clipboard to the mouse position and selects what was pasted, so that it easy to
fine position it. Normally, when dragging a selection to a new location, junctions will
be automatically inserted as needed.

3.4 Adding text

Reference and part/value labels can be added to elements that don’t already display
them by double clicking on the element. These labels will move with the element
and can be micropositioned by dragging with the mouse. To hide a label, hover over
it with the mouse pointer and press “Backspace.” (This doesn’t actually delete the
annotation; it can be made visible again by double clicking the parent element.)

Arbitrary textual annotations can be placed anywhere on the canvas simply by
double clicking on the canvas. At present, special formatting is not supported, but
your requests will be considered. To remove an annotation, simply delete all the text
in it. (Press “Control”+“A” then “Backspace” or “Delete.”)

3.5 Exporting and printing

CSchem does not directly talk to printers. However, it can export the circuit diagram
as vector graphics (SVG). In addition, the parts list can be exported as a CSV file.
For further convenience, a bitmap image of the diagram can be copied to the system

8



clipboard for direct inclusion in, e.g., an electronic lab notebook. Likewise, the parts
list can be copied to the system clipboard.

9



Chapter 4

Advanced topics

4.1 Parts list

To open a parts list as a side panel, use the “View” menu or press “Control”+“Shift”+“L”.
The parts list can be used to conveniently modify the “reference” and “part/value” text
associated with different elements, and allows you to add arbitrary notes to any ele-
ments. (Those notes are not displayed on the canvas.)

4.2 More about elements

It is conceptually useful to distinguish between several kinds of elements:

Ports These are nonphysical entities such as a ground reference or markers to give
names to signal traces.

Parts These are mostly straightforward physical entities such as resistors, transis-
tors, and connectors, but also more complex entities like logic gates and opamps.

Containers These are the physical devices that contain one or more logic gates or
opamps.

A few examples (Figure 4.1) should help explain this. Ports and simple parts are
straightforward enough (Fig. 4.1A and B). Virtual parts (Fig. 4.1C) and containers
(Fig. 4.1D) may need some explanation.

Imagine the simple amplifier circuit for a photodiode in Fig. 4.2. In this circuit, Vout
is related to the photocurrent ID by Vout = R1 ID. (To see this, consider that light hitting
a photodiode induces a photocurrent to run from the cathode to the anode, i.e., in the
reverse direction of the normal diode current. Because the opamp A1 has near-infinite
input impedance, that current can only run through R1, which must therefore (Ohm’s
law) develop a voltage V = ID R1.) Drawing this this circuit in this simple form is

10



A B
B1

C

A1.1

D

V–

V+1
2

A1

Figure 4.1: Several kinds of elements. A. A ground reference as an example of a port.
B. A battery as an example of a simple part. C. An opamp as an example of a “virtual
part.” D. A “container” for two opamps.

A1

Vout

R1

D1

Figure 4.2: A simple photodiode amplifier.

attractive for didactic purposes: including the power connections to the opamp would
make it harder to understand. However, if we are going to actually build this circuit,
we do need the opamp to be powered. Rather than complicate the simple drawing by
drawing power connections to the opamp symbol, however, I prefer to relegate that
housekeeping stuff to a separate part of the diagram (as in Fig. 4.3). That way, the

A1

Vout

R1

D1

V–

V+

A1

OPA350 +5 V

Figure 4.3: The photodiode amplifier with power supply connections.

boring stuff (such as the fact that we are using a 5-V power supply and an OPA350
opamp) does not get in the way of the interesting stuff. Note that the virtual opamp
and the container are both labeled A1, because they are ultimately one and the same
when it comes to actually building the circuit on a PCB.

11



4.3 Drawing custom elements

CSchem shows the most commonly used circuit elements in a side bar. It also ships
with a folder of less commonly used elements which can be used in a drawing simply
by dragging them in from a Filer window. If you need symbols that are not in that
collection, you can draw your own in an external SVG editor like Inkscape. The easiest
way to begin is to load one of the symbols from the supplied folder, save it under a new
name, and make edits.1

To make CSchem understand the structure of your file, it should contain one single
group that has all the graphics of your symbol. In addition, the file should contain
several pink circles2 to mark pins. These circles should not be part of the group, but
exist as separate top-level objects. Each of these circles should have a title tag with
a specific format that identifies it as a marker for a pin location. As an example,
consider a custom symbol for a 4-diode rectifier (Fig. 4.4). The title tag should have

A

C

B

Figure 4.4: A custom symbol for a rectifier circuit. A. The symbol. B. Inkscape screen-
shot showing the “title” tag on one of the pin markers.
C. Example of a custom element with a placeholder for reference text.

the form “pin:name” where name is an arbitrary text to identify the pin. Pin names
should be chosen to reflect the function of a pin rather than the number of a pin in any
particular physical device that implements the symbol. For instance, for a MOSFET,
appropriate pin names would be “G,” “D,” and “S” (for Gate, Source and Drain) rather
than “1,” “2,” and “3”. If one particular numbering scheme is prevalent, it is possible
to use both numbers and a name in the title tag. For instance: “pin:1/G” or “pin:3/S.”

The pink circles will not appear in CSChem; they are just to mark the pin posi-
tions.

1I have found that starting from scratch in a new Inkscape file tends to cause problems with scaling
and translation. This is at least partly due to a subtle bug in CSchem’s handling of SVG files which may
be fixed in a future version. For now, starting from an existing file rather than copying and pasting from
an existing file into a new file is the most practical solution.

2The color is not actually significant; I use pink by convention. You may not, however replace the
circle by some other shape.

12



In addition to circles that represent pins, custom symbols may also contain rect-
angles (conventionally with rounded corners) as placeholders for annotations such as
reference text (Fig. 4.4C). These should have “annotation:ref” or “annotation:value”
as their title tag.1 If no placeholders for annotations are included, annotations will be
placed at a default location.

Custom symbols that represent containers are slightly more complex (Fig. 4.5). In

A
V+

V–

/EN

1

2

3

B

C

S1.1 S1.2 S1.3

J1 J2 J3

J4 J5
V+

V–

/EN

1

2

3

S1
MAX4619

Figure 4.5: A custom symbol for a container for three electronic switches (A) and a
custom symbol for one of those switches (B). Pink circles on the container symbol rep-
resent pins that should be wired on the container symbol; green circles represent pins
that should be wired on the contents instead. C. A (rather silly) circuit demonstrating
the use of these symbols.

addition to the usual pink circles, such symbols should contain green circles to repre-
sent the pins that will be linked to the contents of the container. These green circles
must be titled “cp:number/index.name,” where number is the physical pin number
on the standard imoplementation of the container; index enumerates the contained
items, and name identifies the pin on the contained item. For example, the switch
drawn in Fig. 4.5B are titled “pin:1/nc,” “pin:2/com,” “pin:3/no,” and “pin:4/sw.” (For
many physical switches, pin order is “normally closed”, “common”, “normally open”;
hence the numbers.) Since the container has the “common” terminal of the first con-
tained switch as physical pin 4 (counting from top-left as is conventional for a DIP
IC), the green circle by that pin is titled “cp:4/1.com.” CSchem automatically matches
this to the pin named “com” on the contained element, i.e, the circle titled “pin:2/com.”

1As an alias for “annotation:ref,” “annotation:name” is also accepted.

13



(The number (“2”) is ignored for the purpose of this matching.) Likewise, physical
pin 11 is the switch terminal of the third contained switch, and is therefore titled
“cp:11:3/sw.” Physical pins that have no functional connections, such as number 7 in
the example, can be titled “cp:7/nc.” This is not important for CSchem, but it tells the
companion program CPCB not to expect a connection to that pin.

It is critical that the above conventions are followed exactly. Otherwise, the symbol
will not load correctly, most likely without even an error message. (I plan to improve
that situation in a future version.)

For visual consistency, the graphics of the symbol should be drawn in black lines
using the same line style (1.5-px wide, solid) and grid spacing (7-px) as well as font
(Lato). The insides of container elements may be drawn in other colors. It may be
helpful to copy bits and pieces from several symbols to your new symbol, but remem-
ber to create your new symbol by editing an existing file rather than starting with an
empty SVG.

14



Chapter 5

Conclusion

I hope that CSchem will be useful to you. As mentioned before, CSchem is in active
development, and I am very interested in your thoughts for improvement.

15


